Dissertation/ Thesis

From Compression of Wearable-based Data to Effortless Indoor Positoning

التفاصيل البيبلوغرافية
العنوان: From Compression of Wearable-based Data to Effortless Indoor Positoning
المؤلفون: Klus, Lucie
Thesis Advisors: Granell, Carlos, Nurmi, Jari, Lohan, Elena Simona
المصدر: TDX (Tesis Doctorals en Xarxa)
بيانات النشر: 2023.
سنة النشر: 2023
وصف مادي: 212 p.
مصطلحات موضوعية: Wearable-based data, Wearable Applications, Ciències
الوصف: Cotutela: Universidad de defensa de la tesis doctoral Tampere University Doctorat Internacional
Description (Translated): The dissertation focuses on boosting the energy efficiency of IoT and wearable devices by implementing lossy compression techniques onto sensor-based time-series data and into indoor localization paradigms. The thesis deals with lossy compression mechanisms that can be implemented for energy-e¿cient, delay-sensitive wearable data gathering, transfer, and storage. The novel DLTC compression method ensures optimal compression ratio and reconstruction error trade-off, with minimum complexity and delay. In the scope of indoor positioning, the proposed bit-level, feature-wise, and sample-wise reduction of the radio map supports accurate positioning while saving resources in data storage and transfer. The work implements a multi-dimensional compression of the radio map to boost the performance e¿ciency of the positioning system and proposes a cascade model to compensate for k-NN¿s drawback of computationally expensive prediction on voluminous datasets.
نوع الوثيقة: Dissertation/Thesis
وصف الملف: application/pdf
اللغة: English
DOI: 10.6035/14124.2023.45900046
URL الوصول: http://hdl.handle.net/10803/688947
Rights: L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
رقم الانضمام: edstdx.10803.688947
قاعدة البيانات: TDX
الوصف
DOI:10.6035/14124.2023.45900046