Dissertation/ Thesis

Cloud-based Indoor Positioning Platform for Context-adaptivity in GNSS-denied Scenarios

التفاصيل البيبلوغرافية
العنوان: Cloud-based Indoor Positioning Platform for Context-adaptivity in GNSS-denied Scenarios
المؤلفون: Quezada Gaibor, Darwin
Thesis Advisors: Huerta Guijarro, Joaquí­n, Torres-Sospedra, Joaquín, Huerta Guijarro, Joaquín
المصدر: TDX (Tesis Doctorals en Xarxa)
بيانات النشر: 2023.
سنة النشر: 2023
وصف مادي: 212 p.
مصطلحات موضوعية: Indoor Positioning, Fingerprinting, Cloud Computing, Machine Learning, Ciències
الوصف: Doctorat internacional
Description (Translated): The demand for positioning, localisation and navigation services is on the rise, largely owing to the fact that such services form an integral part of applications in areas such as agriculture, robotics, and eHealth. Depending on the field of application, these services must accomplish high levels of accuracy, flexibility, and integrability. This dissertation focuses on improving computing efficiency, data pre-processing, and software architecture for indoor positioning solutions without leaving aside position and location accuracy. The dissertation begins by presenting a systematic review of current cloud-based indoor positioning solutions. Secondly, we focus on the study of data optimisation techniques such as data cleansing and data augmentation. The third contribution suggests two algorithms to group similar fingerprints into clusters. The fourth contribution explores the use of Machine Learning (ML) models to enhance position estimation accuracy. Finally, this dissertation summarises the key findings in an open-source cloud platform for indoor positioning.
نوع الوثيقة: Dissertation/Thesis
وصف الملف: application/pdf
اللغة: English
DOI: 10.6035/14124.2023.821275
URL الوصول: http://hdl.handle.net/10803/688141
Rights: L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
رقم الانضمام: edstdx.10803.688141
قاعدة البيانات: TDX
الوصف
DOI:10.6035/14124.2023.821275