The volume of pseudoeffective line bundles and partial equilibrium
العنوان: | The volume of pseudoeffective line bundles and partial equilibrium |
---|---|
المؤلفون: | Darvas, T., Xia, Mingchen, 1994 |
المصدر: | Geometry and Topology. 28(4):1957-1993 |
مصطلحات موضوعية: | equilibrium, Bergman kernel, Hermitian line bundle, volume |
الوصف: | Let (L, he-u) be a pseudoeffective line bundle on an n–dimensional compact Kähler manifold X. Let h0 (X, Lk ⊗(ku)) be the dimension of the space of sections s of Lk such that hk (s, s)e-ku is integrable. We show that the limit of k-n h0 (X, Lk ⊗J(ku)) exists, and equals the nonpluripolar volume of P[u]J, the J–model potential associated to u. We give applications of this result to Kähler quantization: fixing a Bernstein–Markov measure v, we show that the partial Bergman measures of u converge weakly to the nonpluripolar Monge–Ampère measure of P[u]J, the partial equilibrium. |
وصف الملف: | electronic |
URL الوصول: | https://research.chalmers.se/publication/542539 https://research.chalmers.se/publication/542539/file/542539_Fulltext.pdf |
قاعدة البيانات: | SwePub |
تدمد: | 14653060 13640380 |
---|---|
DOI: | 10.2140/gt.2024.28.1957 |