Academic Journal

Developing and Multi-Objective Optimization of a Combined Energy Absorber Structure Using Polynomial Neural Networks and Evolutionary Algorithms

التفاصيل البيبلوغرافية
العنوان: Developing and Multi-Objective Optimization of a Combined Energy Absorber Structure Using Polynomial Neural Networks and Evolutionary Algorithms
المؤلفون: Najibi, Amir, Shojaeefard, Mohammad Hassan, Yeganeh, Mohsen
المصدر: Latin American Journal of Solids and Structures. January 2016 13(14)
بيانات النشر: Associação Brasileira de Ciências Mecânicas, 2016.
سنة النشر: 2016
مصطلحات موضوعية: Combined energy absorber, Multi-objective optimization, GMDH neural network, Modified genetic algorithm NSGA-II, Pareto curves
الوصف: In this study a newly developed thin-walled structure with the combination of circular and square sections is investigated in term of crashworthiness. The results of the experimental tests are utilized to validate the Abaqus/ExplicitTM finite element simulations and analysis of the crush phenomenon. Three polynomial meta-models based on the evolved group method of data handling (GMDH) neural networks are employed to simply represent the specific energy absorption (SEA), the initial peak crushing load (P1) and the secondary peak crushing load (P2) with respect to the geometrical variables. The training and testing data are extracted from the finite element analysis. The modified genetic algorithm NSGA-II, is used in multi-objective optimisation of the specific energy absorption, primary and secondary peak crushing load according to the geometrical variables. Finally, in each optimisation process, the optimal section energy absorptions are compared with the results of the finite element analysis. The nearest to ideal point and TOPSIS optimisation methods are applied to choose the optimal points.
نوع الوثيقة: article
وصف الملف: text/html
اللغة: English
تدمد: 1679-7825
DOI: 10.1590/1679-78252797
URL الوصول: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252016001402552
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edssci.S1679.78252016001402552
قاعدة البيانات: SciELO
الوصف
تدمد:16797825
DOI:10.1590/1679-78252797