Electronic Resource

A deep learning approach to the automatic detection of alignment errors in cryo-electron tomographic reconstructions

التفاصيل البيبلوغرافية
العنوان: A deep learning approach to the automatic detection of alignment errors in cryo-electron tomographic reconstructions
المؤلفون: Ministerio de Ciencia, Innovación y Universidades (España), de Isidro-Gómez, F P, Vilas, J L, Losana, P, Carazo, J M, Sorzano, Carlos Óscar S.
بيانات النشر: Elsevier 2024-03
نوع الوثيقة: Electronic Resource
مستخلص: Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general context, including cellular in situ observations. The approach starts by collecting a set of images at different projection directions by tilting the specimen stage inside the microscope. Therefore, a crucial preliminary step is to precisely define the acquisition geometry by aligning all the tilt images to a common reference. Errors introduced in this step will lead to the appearance of artifacts in the tomographic reconstruction, rendering them unsuitable for the sample study. Focusing on fiducial-based acquisition strategies, this work proposes a deep-learning algorithm to detect misalignment artifacts in tomographic reconstructions by analyzing the characteristics of these fiducial markers in the tomogram. In addition, we propose an algorithm designed to detect fiducial markers in the tomogram with which to feed the classification algorithm in case the alignment algorithm does not provide the location of the markers. This open-source software is available as part of the Xmipp software package inside of the Scipion framework, and also through the command-line in the standalone version of Xmipp.
مصطلحات الفهرس: artículo
URL: http://hdl.handle.net/10261/358505
https://api.elsevier.com/content/abstract/scopus_id/85180588375
Journal of structural biology
Publisher's version
Sí
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104757RB-I00/ES/AIM-CRYOEM: PROCESAMIENTO DE IMAGEN AVANZADO ORIENTADO AL ANALISIS DE PARTICULAS INDIVIDUALES EN MICROSCOPIA ELECTRONICA EN CONDICIONES CRIOGENICAS
الاتاحة: Open access content. Open access content
openAccess
ملاحظة: English
Other Numbers: CTK oai:digital.csic.es:10261/358505
Journal of Structural Biology
10478477
10.1016/j.jsb.2023.108056
38101554
2-s2.0-85180588375
1442726746
المصدر المساهم: CSIC
From OAIster®, provided by the OCLC Cooperative.
رقم الانضمام: edsoai.on1442726746
قاعدة البيانات: OAIster