Electronic Resource
On the Krull dimension of rings of continuous semialgebraic functions
العنوان: | On the Krull dimension of rings of continuous semialgebraic functions |
---|---|
المؤلفون: | Fernando Galván, José Francisco, Gamboa, J. M. |
بيانات النشر: | Universidad Autónoma Madrid 2023-06-19T14:57:54Z 2023-06-19T14:57:54Z 2015 |
نوع الوثيقة: | Electronic Resource |
مستخلص: | Let R be a real closed field, S(M) the ring of continuous semialgebraic functions on a semialgebraic set M subset of R-m and S* (M) its subring of continuous semialgebraic functions that are bounded with respect to R. In this work we introduce semialgebraic pseudo-compactifications of M and the semialgebraic depth of a prime ideal p of S(M) in order to provide an elementary proof of the finiteness of the Krull dimensions of the rings S(M) and S* (M) for an arbitrary semialgebraic set M. We are inspired by the classical way to compute the dimension of the ring of polynomial functions on a complex algebraic set without involving the sophisticated machinery of real spectra. We show dim(S(M)) = dim(S* (M)) = dim(M) and prove that in both cases the height of a maximal ideal corresponding to a point p is an element of M coincides with the local dimension of M at p. In case p is a prime z-ideal of S(M), its semialgebraic depth coincides with the transcendence degree of the real closed field qf(S(M)/p) over R GAAR Depto. de Álgebra, Geometría y Topología Fac. de Ciencias Matemáticas TRUE pub |
مصطلحات الفهرس: | 512.7, Semialgebraic function, bounded semialgebraic function, z-ideal, semialgebraic depth, Krull dimension, local dimension, transcendence degree, real closed ring, real closed field, real closure of a ring, Geometria algebraica, 1201.01 Geometría Algebraica, journal article |
URL: | MTM2011-22435 |
الاتاحة: | Open access content. Open access content open access |
ملاحظة: | application/pdf 0213-2230 English |
Other Numbers: | ESRCM oai:docta.ucm.es:20.500.14352/34973 J. Atiyah, I.G. MacDonald: Introduction to Commutative Algebra. Addison–Wesley Publishing Co., Inc., Reading, Mass.-London: 1969. J. Bochnak, M. Coste, M.-F. Roy: Real algebraic geometry. Ergeb. Math. 36, Springer-Verlag, Berlin: 1998. M. Carral, M. Coste: Normal spectral spaces and their dimensions. J. Pure Appl. Algebra 30 (1983), 227-235. G.L. Cherlin, M.A. Dickmann: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126 (1986), no. 2, 147–183. G.L. Cherlin, M.A. Dickmann: Real closed rings. II. Model theory. Ann. Pure Appl. Logic 25 (1983), no. 3, 213–231. H. Delfs, M. Knebusch: Separation, Retractions and homotopy extension in semialgebraic spaces. Pacific J. Math. 114 (1984), no. 1, 47–71. H. Delfs, M. Knebusch: Locally semialgebraic spaces. Lecture Notes in Mathematics, 1173. SpringerVerlag, Berlin: 1985. J.M. Gamboa: On prime ideals in rings of semialgebraic functions. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1034–1041. J.M. Gamboa, J.M. Ruiz: On rings of semialgebraic functions. Math. Z. 206 (1991) no. 4, 527–532. L. Gillman, M. Jerison: Rings of continuous functions. The Univ. Series in Higher Nathematics 1, D. Van Nostrand Company, Inc.: 1960. A. Prestel, N. Schwartz: Model theory of real closed rings. Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), 261–290, Fields Inst. Commun., 32, Amer. Math. Soc., Providence, RI, 2002. N. Schwartz: Real closed rings. Habilitationsschrift, München: 1984. N. Schwartz: Real closed rings. Algebra and order (Luminy-Marseille, 1984), 175–194, Res. Exp. Math., 14, Heldermann, Berlin: 1986. N. Schwartz: The basic theory of real closed spaces. Mem. Amer. Math. Soc. 77 (1989), no. 397, viii + 122 pp. N. Schwartz: Rings of continuous functions as real closed rings. Ordered algebraic structures (Cura¸cao, 1995), 277–313, Kluwer Acad. Publ., Dordrecht: 1997. N. Schwartz: Epimorphic extensions and Prüfer extensions of partially ordered rings. Manuscripta Math. 102 (2000), 347-381 0213-2230 10.4171/RMI/852 1413949699 |
المصدر المساهم: | REPOSITORIO E-PRINTS UNIVERSIDAD COMPLU From OAIster®, provided by the OCLC Cooperative. |
رقم الانضمام: | edsoai.on1413949699 |
قاعدة البيانات: | OAIster |
الوصف غير متاح. |