Electronic Resource

COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms

التفاصيل البيبلوغرافية
العنوان: COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms
المؤلفون: Barcelona Supercomputing Center, Ostaszewski, Marek, Niarakis, Anna, Mazein, Alexander, Kuperstein, Inna, Phair, Robert, Montagud, Arnau, Ponce De Leon, Miguel, Vazquez, Miguel, Valencia, Alfonso
بيانات النشر: Wiley Open Access 2021-10-21
نوع الوثيقة: Electronic Resource
مستخلص: We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
We would like to thank Andjela Tatarovic, architect, and Gina Crovetto, a researcher in the field of cancer, for their help with the design of the top-level view diagrams. We would like to acknowledge the Responsible and Reproducible Research (R3) team of the Luxembourg Centre for Systems Biomedicine for supporting the project and providing necessary communication and data sharing resources. The work presented in this paper was carried out using the ELIXIR Luxembourg tools and services. This study was supported by the Luxembourg National Research Fund (FNR) COVID-19 Fast-Track grant programme, grant COVID-19/2020-1/14715687/CovScreen (E. Glaab); European Commission, INFORE grant H2020-ICT-825070 (A. Montagud, M. Ponce de Leon, M. Vazques and A. Valencia); European Commission, PerMedCoE grant H2020-ICT-951773 (A. Montagud, M. Ponce de Leon, M. Vazques and A. Valencia) the Federal Ministry of Education and Research (BMBF, Germany) and the Baden-Württemberg Ministry of Science, the Excellence Strategy of the German Federal and State Governments (A. Renz); German Center for Infection Research (DZIF), grant no 8020708703 (A. Dräger); The Netherlands Organisation for Health Research and Development (ZonMw), grant no 10430012010015, (M. Kutmon, S. Coort, F. Ehrhart, N. Pham, E.L. Willighagen, C.T. Evelo); H2020 Marie Skłodowska-Curie Actions, grant number 765274 (J. Scheel); National Institutes of Health, USA (NIH), grant number U41 HG003751 (L.D. Stein). The development of Reactome is supported by grants from the US National Institutes of Health (U41 HG003751) and the European Molecular Biology Laboratory.
Peer Reviewed
"Article signat per més de 50 autors/es: Marek Ostaszewski, Anna Niarakis, Alexander Mazein, Inna Kuperstein, Robert Phair, Aurelio Orta-Resendiz, Vidisha Singh, Sara Sadat Aghamiri, Marcio Luis Acencio, Enrico Glaab, Andreas Ruepp, Gisela Fobo, Corinna Montrone, Barbara Brauner, Goar Frishman, Luis Cristóbal Monraz Gómez, Julia Somers, Matti Hoch, Shailendra Kumar Gupta, Julia Scheel, Hanna Borlinghaus, Tobias Czauderna, Falk Schreiber, Arnau Montagud, Miguel Ponce de Leon, Akira Funahashi, Yusuke Hiki, Noriko Hiroi, Takahiro G Yamada, Andreas Dräger, Alina Renz, Muhammad Naveez, Zsolt Bocskei, Francesco Messina, Daniela Börnigen, Liam Fergusson, Marta Conti, Marius Rameil, Vanessa Nakonecnij, Jakob Vanhoefer, Leonard Schmiester, Muying Wang,Emily E Ackerman, Jason E Shoemaker, Jeremy Zucker, Kristie Oxford, Jeremy Teuton, Ebru Kocakaya, Gökçe Yağmur Summak, Kristina Hanspers, Martina Kutmon, Susan Coort, Lars Eijssen, Friederike Ehrhart, Devasahayam Arokia Balaya,Denise Slenter, Marvin Martens, Nhung Pham, Robin Haw, Bijay Jassal, Lisa Matthews, Marija Orlic-Milacic, Andrea Senff Ribeiro, Karen Rothfels, Veronica Shamovsky, Ralf Stephan, Cristoffer Sevilla, Thawfeek Varusai, Jean-Marie Ravel, Rupsha Fraser, Vera Ortseifen, Silvia Marchesi, Piotr Gawron, Ewa Smula, Laurent Heirendt, Venkata Satagopam, Guanming Wu, Anders Riutta, Martin Golebiewski, Stuart Owen51,Carole Goble, Xiaoming Hu, Rupert W Overall, Dieter Maier, Angela Bauch, Benjamin M Gyori, John A Bachman, Carlos Vega, Valentin Grouès, Miguel Vazquez, Pablo Porras, Luana Licata, Marta Iannuccelli, Francesca Sacco57, Anastasia Nesterova, Anton Yuryev, Anita de Waard, Denes Turei, Augustin Luna, Ozgun Babur, Sylvain Soliman, Alberto Valdeolivas, Marina Esteban-Medina, Maria Peña-Chilet, Kinza Rian, Tomáš Helikar, Bhanwar Lal Puniya, Dezso Modos, Agatha Treveil, Marton Olbei, Bertrand De Meulder, Stephane Ballereau, Aurélien Dugourd, Aurélien Naldi, Vincent Noël, Laurence Calzone, Chris Sander, Emek Demir
Postprint (published version)
مصطلحات الفهرس: Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica, COVID-19 (Disease), Repositories, Digital, Datasets, Computable knowledge repository, Large-scale biocuration, Omics data analysis, Open access community effort, Systems biomedicine, COVID-19 (Malaltia), Article
URL: http://hdl.handle.net/2117/354379
https://www.embopress.org/doi/full/10.15252/msb.202110387
https://www.embopress.org/doi/full/10.15252/msb.202110387
info:eu-repo/grantAgreement/EC/H2020/951773/EU/HPC%2FExascale Centre of Excellence in Personalised Medicine/PerMedCoE
info:eu-repo/grantAgreement/EC/H2020/825070/EU/Interactive Extreme-Scale Analytics and Forecasting/INFORE
الاتاحة: Open access content. Open access content
Attribution 3.0 Spain
Attribution 4.0 International (CC BY 4.0)
http://creativecommons.org/licenses/by/3.0/es
https://creativecommons.org/licenses/by/4.0
Open Access
ملاحظة: application/pdf
English
Other Numbers: HGF oai:upcommons.upc.edu:2117/354379
Ostaszewski, M. [et al.]. COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. "Molecular Systems Biology", 21 Octubre 2021, vol. 17, núm. 10, e10387.
1744-4292
10.15252/msb.202110387
1289791479
المصدر المساهم: UNIV POLITECNICA DE CATALUNYA
From OAIster®, provided by the OCLC Cooperative.
رقم الانضمام: edsoai.on1289791479
قاعدة البيانات: OAIster