Academic Journal

Evaluation of empirical attributes for credit risk forecasting from numerical data

التفاصيل البيبلوغرافية
العنوان: Evaluation of empirical attributes for credit risk forecasting from numerical data
المؤلفون: Augustinos I. Dimitras, Stelios Papadakis, Alexandros Garefalakis
المصدر: Investment Management & Financial Innovations, Vol 14, Iss 1, Pp 9-18 (2017)
بيانات النشر: LLC "CPC "Business Perspectives", 2017.
سنة النشر: 2017
المجموعة: LCC:Finance
مصطلحات موضوعية: computational intelligence, credit risk, management commentary, Management Commentary Index, quantitative and qualitative criteria, Finance, HG1-9999
الوصف: In this research, the authors proposed a new method to evaluate borrowers’ credit risk and quality of financial statements information provided. They use qualitative and quantitative criteria to measure the quality and the reliability of its credit customers. Under this statement, the authors evaluate 35 features that are empirically utilized for forecasting the borrowers’ credit behavior of a Greek Bank. These features are initially selected according to universally accepted criteria. A set of historical data was collected and an extensive data analysis is performed by using non parametric models. Our analysis revealed that building simplified model by using only three out of the thirty five initially selected features one can achieve the same or slightly better forecasting accuracy when compared to the one achieved by the model uses all the initial features. Also, experimentally verified claim that universally accepted criteria can’t be globally used to achieve optimal results is discussed.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1810-4967
1812-9358
Relation: https://businessperspectives.org/images/pdf/applications/publishing/templates/article/assets/8210/imfi_2017_01_Dimitras.pdf; https://doaj.org/toc/1810-4967; https://doaj.org/toc/1812-9358
DOI: 10.21511/imfi.14(1).2017.01
URL الوصول: https://doaj.org/article/ffd53235f55f4d3ca657f4f4fe417251
رقم الانضمام: edsdoj.ffd53235f55f4d3ca657f4f4fe417251
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:18104967
18129358
DOI:10.21511/imfi.14(1).2017.01