Academic Journal

DBU-Net: Dual-Branch U-Net for Retinal Fundus Image Super-Resolution Under Complex Degradation Conditions

التفاصيل البيبلوغرافية
العنوان: DBU-Net: Dual-Branch U-Net for Retinal Fundus Image Super-Resolution Under Complex Degradation Conditions
المؤلفون: Xianghui Chen, Shi Qiu, Yue Wang, Yu Zhang, Zhaoyan Liu, Xinhong Wang, Weiyuan Yao, Hongjia Cheng, Feihong Wang, Zhan Shu, Xuesong Li
المصدر: IEEE Access, Vol 13, Pp 6237-6249 (2025)
بيانات النشر: IEEE, 2025.
سنة النشر: 2025
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Retinal fundus image, super-resolution, deep learning, U-Net, attention, multi-scale, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Retinal fundus images are widely utilized in clinical screening and diagnosis of ocular diseases. However, in practical scenarios, the obtained fundus images are prone to be low-resolution (LR). LR fundus images increase the uncertainty in clinical observations, thereby heightening the risk of misdiagnosis. Despite this, popular super-resolution methods often yield unsatisfied results, especially when fundus images suffer from multiple degradations. In this article, we first analyze the degradation models of fundus images during the super-resolution reconstruction (SR) process. Then, we specially design a dual-branch U-Net network for retinal fundus images SR which incorporates our proposed muti-scale residual encoders (MSRE) with channel and spatial attention block (CSAB), while simultaneously preserving anatomical retinal structures and global features during SR process. Extensive experimental results on synthetically degraded LR fundus images demonstrate that our method can produce favorable results across multiple degradation models.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10813356/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2024.3522065
URL الوصول: https://doaj.org/article/dff7703e2a0d4d658d31665198fdf3a2
رقم الانضمام: edsdoj.ff7703e2a0d4d658d31665198fdf3a2
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2024.3522065