التفاصيل البيبلوغرافية
العنوان: |
Normalized solutions for Schrödinger equations with potential and general nonlinearities involving critical case on large convex domains |
المؤلفون: |
Jun Wang, Zhaoyang Yin |
المصدر: |
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 53, Pp 1-53 (2024) |
بيانات النشر: |
University of Szeged, 2024. |
سنة النشر: |
2024 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
schrödinger equations, normalized solutions, variational methods, mixed nonlinearity, Mathematics, QA1-939 |
الوصف: |
In this paper, we study the following Schrödinger equations with potentials and general nonlinearities \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u=|u|^{q-2}u+\beta f(u), \\ \int |u|^2dx=\Theta, \end{cases} \end{equation*} both on $\mathbb{R}^N$ as well as on domains $\Omega_r$ where $\Omega_r \subset \mathbb{R}^N$ is an open bounded convex domain and $r>0$ is large. The exponent satisfies $2+\frac{4}{N}\leq q\leq2^*=\frac{2 N}{N-2}$ and $f:\mathbb{R}\rightarrow \mathbb{R}$ satisfies $L^2$-subcritical or $L^2$-critical growth. This paper generalizes the conclusion of Bartsch et al. in [4]. Moreover, we consider the Sobolev critical case and $L^2$-critical case of the above problem. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
1417-3875 |
Relation: |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11007; https://doaj.org/toc/1417-3875 |
DOI: |
10.14232/ejqtde.2024.1.53 |
URL الوصول: |
https://doaj.org/article/feca35162eef4d8d9bcf1ee6572a00d6 |
رقم الانضمام: |
edsdoj.feca35162eef4d8d9bcf1ee6572a00d6 |
قاعدة البيانات: |
Directory of Open Access Journals |