Academic Journal

Normalized solutions for Schrödinger equations with potential and general nonlinearities involving critical case on large convex domains

التفاصيل البيبلوغرافية
العنوان: Normalized solutions for Schrödinger equations with potential and general nonlinearities involving critical case on large convex domains
المؤلفون: Jun Wang, Zhaoyang Yin
المصدر: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 53, Pp 1-53 (2024)
بيانات النشر: University of Szeged, 2024.
سنة النشر: 2024
المجموعة: LCC:Mathematics
مصطلحات موضوعية: schrödinger equations, normalized solutions, variational methods, mixed nonlinearity, Mathematics, QA1-939
الوصف: In this paper, we study the following Schrödinger equations with potentials and general nonlinearities \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u=|u|^{q-2}u+\beta f(u), \\ \int |u|^2dx=\Theta, \end{cases} \end{equation*} both on $\mathbb{R}^N$ as well as on domains $\Omega_r$ where $\Omega_r \subset \mathbb{R}^N$ is an open bounded convex domain and $r>0$ is large. The exponent satisfies $2+\frac{4}{N}\leq q\leq2^*=\frac{2 N}{N-2}$ and $f:\mathbb{R}\rightarrow \mathbb{R}$ satisfies $L^2$-subcritical or $L^2$-critical growth. This paper generalizes the conclusion of Bartsch et al. in [4]. Moreover, we consider the Sobolev critical case and $L^2$-critical case of the above problem.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1417-3875
Relation: http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11007; https://doaj.org/toc/1417-3875
DOI: 10.14232/ejqtde.2024.1.53
URL الوصول: https://doaj.org/article/feca35162eef4d8d9bcf1ee6572a00d6
رقم الانضمام: edsdoj.feca35162eef4d8d9bcf1ee6572a00d6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14173875
DOI:10.14232/ejqtde.2024.1.53