Academic Journal

High-order compact difference methods for solving two-dimensional nonlinear wave equations

التفاصيل البيبلوغرافية
العنوان: High-order compact difference methods for solving two-dimensional nonlinear wave equations
المؤلفون: Shuaikang Wang, Yunzhi Jiang, Yongbin Ge
المصدر: Electronic Research Archive, Vol 31, Iss 6, Pp 3145-3168 (2023)
بيانات النشر: AIMS Press, 2023.
سنة النشر: 2023
المجموعة: LCC:Mathematics
LCC:Applied mathematics. Quantitative methods
مصطلحات موضوعية: nonlinear wave equation, nonlinear compact difference scheme, three-level linearized compact difference scheme, coupled sine-gordon equations, Mathematics, QA1-939, Applied mathematics. Quantitative methods, T57-57.97
الوصف: Nonlinear wave equations are widely used in many areas of science and engineering. This paper proposes two high-order compact (HOC) difference schemes with convergence orders of $ O\left({{\tau ^4} + h_x^4 + h_y^4} \right) $ that can be used to solve nonlinear wave equations. The first scheme is a nonlinear compact difference scheme with three temporal levels. After calculating the second-order spatial derivatives of the previous time level using the Padé scheme, numerical solutions of the next time level are obtained through repeated iterations. The second scheme is a three-level linearized compact difference scheme. Unlike the first scheme, iterations are not required and it obtains numerical solutions through an explicit calculation. The two proposed schemes are applied to solutions of the coupled sine-Gordon equations. Finally, some numerical experiments are presented to confirm the effectiveness and accuracy of the proposed schemes.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2688-1594
Relation: https://doaj.org/toc/2688-1594
DOI: 10.3934/era.2023159?viewType=HTML
DOI: 10.3934/era.2023159
URL الوصول: https://doaj.org/article/fe10b5a6dad044fb8c9ca8a7886bcad7
رقم الانضمام: edsdoj.fe10b5a6dad044fb8c9ca8a7886bcad7
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26881594
DOI:10.3934/era.2023159?viewType=HTML