Academic Journal
High-Fidelity Light Field Reconstruction Method Using View-Selective Angular Feature Extraction
العنوان: | High-Fidelity Light Field Reconstruction Method Using View-Selective Angular Feature Extraction |
---|---|
المؤلفون: | Shubo Zhou, Xue-Qin Jiang, Xiaoming Ding, Rong Huang |
المصدر: | IEEE Access, Vol 11, Pp 31157-31166 (2023) |
بيانات النشر: | IEEE, 2023. |
سنة النشر: | 2023 |
المجموعة: | LCC:Electrical engineering. Electronics. Nuclear engineering |
مصطلحات موضوعية: | Light field reconstruction, light field imaging, view-selective angular feature, convolutional neural network, Electrical engineering. Electronics. Nuclear engineering, TK1-9971 |
الوصف: | Deep learning (DL) provides an effective approach for light field (LF) reconstruction that aims to synthesize novel views from sparsely-sampled views. However, it is challenging to address domain asymmetry when adopting spatial-angular interaction LF reconstruction methods. To overcome this problem, a view-selective angular feature extraction block (VS-LFAFE) is proposed to obtain full-resolution angular features that enumerate whole viewpoints in a macropixel. By applying the VS-LFAFE, a novel LF reconstruction method is proposed, consisting of two subblocks: a spatial-angular feature extraction and fusion block, and an angular upsampling block. Experimental results demonstrate the effectiveness of the VS-LFAFE, and validate that the proposed method can achieve superior performance compared with the state-of-the-art methods. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2169-3536 16982568 |
Relation: | https://ieeexplore.ieee.org/document/10081352/; https://doaj.org/toc/2169-3536 |
DOI: | 10.1109/ACCESS.2023.3261967 |
URL الوصول: | https://doaj.org/article/fb6dd87f98f246eea1698256827cd0ed |
رقم الانضمام: | edsdoj.fb6dd87f98f246eea1698256827cd0ed |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 21693536 16982568 |
---|---|
DOI: | 10.1109/ACCESS.2023.3261967 |