Academic Journal

Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds

التفاصيل البيبلوغرافية
العنوان: Gradient Enhancement Techniques and Motion Consistency Constraints for Moving Object Segmentation in 3D LiDAR Point Clouds
المؤلفون: Fangzhou Tang, Bocheng Zhu, Junren Sun
المصدر: Remote Sensing, Vol 17, Iss 2, p 195 (2025)
بيانات النشر: MDPI AG, 2025.
سنة النشر: 2025
المجموعة: LCC:Science
مصطلحات موضوعية: LiDAR point cloud, moving object segmentation, range image, gradient enhancement, motion consistency, Science
الوصف: The ability to segment moving objects from three-dimensional (3D) LiDAR scans is critical to advancing autonomous driving technology, facilitating core tasks like localization, collision avoidance, and path planning. In this paper, we introduce a novel deep neural network designed to enhance the performance of 3D LiDAR point cloud moving object segmentation (MOS) through the integration of image gradient information and the principle of motion consistency. Our method processes sequential range images, employing depth pixel difference convolution (DPDC) to improve the efficacy of dilated convolutions, thus boosting spatial information extraction from range images. Additionally, we incorporate Bayesian filtering to impose posterior constraints on predictions, enhancing the accuracy of motion segmentation. To handle the issue of uneven object scales in range images, we develop a novel edge-aware loss function and use a progressive training strategy to further boost performance. Our method is validated on the SemanticKITTI-based LiDAR MOS benchmark, where it significantly outperforms current state-of-the-art (SOTA) methods, all while working directly on two-dimensional (2D) range images without requiring mapping.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-4292
Relation: https://www.mdpi.com/2072-4292/17/2/195; https://doaj.org/toc/2072-4292
DOI: 10.3390/rs17020195
URL الوصول: https://doaj.org/article/cf6310f1fa3e4cde87046cae307f5543
رقم الانضمام: edsdoj.f6310f1fa3e4cde87046cae307f5543
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20724292
DOI:10.3390/rs17020195