Academic Journal

Short-Term Power Load Prediction Based on VMD-SG-LSTM

التفاصيل البيبلوغرافية
العنوان: Short-Term Power Load Prediction Based on VMD-SG-LSTM
المؤلفون: Qiu Sun, Huafeng Cai
المصدر: IEEE Access, Vol 10, Pp 102396-102405 (2022)
بيانات النشر: IEEE, 2022.
سنة النشر: 2022
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Power load prediction, variational mode decomposition, intrinsic mode function, S-G filtering, long short-term memory network, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Power load prediction plays an important role in the safety and stability of national power system. However, due to the nonlinear and multi-frequency characteristics of the power system itself, power load prediction is difficult. To address this problem, we propose a short-term power load prediction model based on variational mode decomposition (VMD). First, original data are decomposed into intrinsic mode function (IMF) of different frequencies using the VMD algorithm, and the decomposed sub-functions are reconstructed. After smoothing the reconstructed data by Savitzky-Golay (S-G) filtering algorithm, the change trend of raw data (CTRD) is obtained. Then, IMF, CTRD and raw data are used as inputs to predict short-term power load by long short-term memory network (LSTM). Finally, the proposed prediction model is compared with the other two groups of prediction models. The results show that the proposed VMD-SG-LSTM prediction model has high fitting ability and high prediction accuracy, and is an effective method for short-term power load prediction.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9889697/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2022.3206486
URL الوصول: https://doaj.org/article/f61b95af1d5142098dd15a02a4f55a74
رقم الانضمام: edsdoj.f61b95af1d5142098dd15a02a4f55a74
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2022.3206486