Academic Journal

Mid-infrared optical coherence tomography and machine learning for inspection of 3D-printed ceramics at the micron scale

التفاصيل البيبلوغرافية
العنوان: Mid-infrared optical coherence tomography and machine learning for inspection of 3D-printed ceramics at the micron scale
المؤلفون: Bettina Heise, Ivan Zorin, Kristina Duswald, Verena Karl, Dominik Brouczek, Julia Eichelseder, Martin Schwentenwein
المصدر: Frontiers in Materials, Vol 11 (2024)
بيانات النشر: Frontiers Media S.A., 2024.
سنة النشر: 2024
المجموعة: LCC:Technology
مصطلحات موضوعية: non-destructive testing, additive ceramic manufacturing, inline monitoring, mid-infrared optical coherence tomography (MIR-OCT), learning and feedback, Technology
الوصف: IntroductionIn this paper, recent developments in non-destructive testing of 3D-printed ceramics and monitoring of additive manufacturing of ceramics are presented.MethodsIn particular, we present the design and use of an inline mid-infrared optical coherence tomography (MIR-OCT) system to evaluate printed and micro-structured specimens in lithography-based ceramic manufacturing (LCM).ResultsThe proposed system helps with the detection of microdefects (e.g., voids, inclusions, deformations) that are already present in green ceramic components, thereby reducing the energy and costs incurred.DiscussionThe challenges during integration are discussed. Especially, the prospects for MIR-OCT imaging combined with machine learning are illustrated with regard to inline inspection during LCM of printed ceramics.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-8016
Relation: https://www.frontiersin.org/articles/10.3389/fmats.2024.1441812/full; https://doaj.org/toc/2296-8016
DOI: 10.3389/fmats.2024.1441812
URL الوصول: https://doaj.org/article/f61944a3125f450c86bfe89fffe982cf
رقم الانضمام: edsdoj.f61944a3125f450c86bfe89fffe982cf
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22968016
DOI:10.3389/fmats.2024.1441812