Academic Journal

Prediction of gastrointestinal bleeding hospitalization risk in hemodialysis using machine learning

التفاصيل البيبلوغرافية
العنوان: Prediction of gastrointestinal bleeding hospitalization risk in hemodialysis using machine learning
المؤلفون: John W. Larkin, Suman Lama, Sheetal Chaudhuri, Joanna Willetts, Anke C. Winter, Yue Jiao, Manuela Stauss-Grabo, Len A. Usvyat, Jeffrey L. Hymes, Franklin W. Maddux, David C. Wheeler, Peter Stenvinkel, Jürgen Floege, on behalf of the INSPIRE Core Group
المصدر: BMC Nephrology, Vol 25, Iss 1, Pp 1-16 (2024)
بيانات النشر: BMC, 2024.
سنة النشر: 2024
المجموعة: LCC:Diseases of the genitourinary system. Urology
مصطلحات موضوعية: Bleeding, Gastrointestinal, Hospitalization, Kidney Failure, Predictive Modeling, Diseases of the genitourinary system. Urology, RC870-923
الوصف: Abstract Background Gastrointestinal bleeding (GIB) is a clinical challenge in kidney failure. INSPIRE group assessed if machine learning could determine a hemodialysis (HD) patient’s 180-day GIB hospitalization risk. Methods An eXtreme Gradient Boosting (XGBoost) and logistic regression model were developed using an HD dataset in United States (2017–2020). Patient data was randomly split (50% training, 30% validation, and 20% testing). HD treatments ≤ 180 days before GIB hospitalization were classified as positive observations; others were negative. Models considered 1,303 exposures/covariates. Performance was measured using unseen testing data. Results Incidence of 180-day GIB hospitalization was 1.18% in HD population (n = 451,579), and 1.12% in testing dataset (n = 38,853). XGBoost showed area under the receiver operating curve (AUROC) = 0.74 (95% confidence interval (CI) 0.72, 0.76) versus logistic regression showed AUROC = 0.68 (95% CI 0.66, 0.71). Sensitivity and specificity were 65.3% (60.9, 69.7) and 68.0% (67.6, 68.5) for XGBoost versus 68.9% (64.7, 73.0) and 57.0% (56.5, 57.5) for logistic regression, respectively. Associations in exposures were consistent for many factors. Both models showed GIB hospitalization risk was associated with older age, disturbances in anemia/iron indices, recent all-cause hospitalizations, and bone mineral metabolism markers. XGBoost showed high importance on outcome prediction for serum 25 hydroxy (25OH) vitamin D levels, while logistic regression showed high importance for parathyroid hormone (PTH) levels. Conclusions Machine learning can be considered for early detection of GIB event risk in HD. XGBoost outperforms logistic regression, yet both appear suitable. External and prospective validation of these models is needed. Association between bone mineral metabolism markers and GIB events was unexpected and warrants investigation. Trial registration This retrospective analysis of real-world data was not a prospective clinical trial and registration is not applicable. Graphical Abstract
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1471-2369
Relation: https://doaj.org/toc/1471-2369
DOI: 10.1186/s12882-024-03809-2
URL الوصول: https://doaj.org/article/f4272cea88a24d7fa5d86c3b4f57a0ee
رقم الانضمام: edsdoj.f4272cea88a24d7fa5d86c3b4f57a0ee
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14712369
DOI:10.1186/s12882-024-03809-2