Academic Journal

Identifying Bearing Faults Using Multiscale Residual Attention and Multichannel Neural Network

التفاصيل البيبلوغرافية
العنوان: Identifying Bearing Faults Using Multiscale Residual Attention and Multichannel Neural Network
المؤلفون: Chun-Yao Lee, Guang-Lin Zhuo
المصدر: IEEE Access, Vol 11, Pp 26953-26963 (2023)
بيانات النشر: IEEE, 2023.
سنة النشر: 2023
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Convolutional neural network (CNN), bearing fault diagnosis, multi-scale feature extraction, multi-channel network, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: To solve the problem of the low signal-to-noise ratio and fault features can only be extracted from a single scale of traditional convolutional neural network (CNN) in vibration-based bearing fault diagnosis, this paper proposes a new multi-scale residual attention and multi-channel network (MSCNet), which can effectively reduce noise and fully extract meaningful features from different scales of the signal. The proposed method combines filtering methods to remove redundant parts and noise in the signal, and multiple filtered signals are input into the proposed CNN. The proposed CNN can perform multi-scale feature extraction on the signal and make the network focus on valuable information in the feature through the residual attention mechanism. Therefore, MSCNet achieves better performance. Experimental results on the published bearing datasets at the Paderborn University and the University of Ottawa show that MSCNet achieves 94.28% and 96.6% accuracy in strong noise environments, while outperforming five state-of-the-art (SOTA) networks in terms of accuracy.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10068499/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2023.3257101
URL الوصول: https://doaj.org/article/f3b407289f7d4747a006343f84364dc8
رقم الانضمام: edsdoj.f3b407289f7d4747a006343f84364dc8
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2023.3257101