Academic Journal

Interpretability Using Reconstruction of Capsule Networks

التفاصيل البيبلوغرافية
العنوان: Interpretability Using Reconstruction of Capsule Networks
المؤلفون: Vranay Dominik, Ruzmetov Mykhailo, Sinčák Peter
المصدر: Acta Electrotechnica et Informatica, Vol 24, Iss 3, Pp 15-22 (2024)
بيانات النشر: Sciendo, 2024.
سنة النشر: 2024
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: capsule neural networks, model explainability, reconstruction mechanism, decoder architectures, explainable artificial intelligence, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: This paper evaluates the effectiveness of different decoder architectures in enhancing the reconstruction quality of Capsule Neural Networks (CapsNets), which impacts model interpretability. We compared linear, convolutional, and residual decoders to assess their performance in improving CapsNet reconstructions. Our experiments revealed that the Conditional Variational Autoencoder Capsule Network (CVAECapOSR) achieved the best reconstruction quality on the CIFAR-10 dataset, while the residual decoder outperformed others on the Brain Tumor MRI dataset. These findings highlight how improved decoder architectures can generate reconstructions of better quality, which can enhance changes by deforming output capsules, thereby making the feature extraction and classification processes within CapsNets more transparent and interpretable. Additionally, we evaluated the computational efficiency and scalability of each decoder, providing insights into their practical deployment in real-world applications such as medical diagnostics and autonomous driving.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1338-3957
Relation: https://doaj.org/toc/1338-3957
DOI: 10.2478/aei-2024-0010
URL الوصول: https://doaj.org/article/f1ae90c0391547dbada636431ed07765
رقم الانضمام: edsdoj.f1ae90c0391547dbada636431ed07765
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:13383957
DOI:10.2478/aei-2024-0010