Academic Journal

A Novel Ergodic Cellular Automaton Model of Gene-Protein Network: Theoretical Nonlinear Analyses and Efficient FPGA Implementation

التفاصيل البيبلوغرافية
العنوان: A Novel Ergodic Cellular Automaton Model of Gene-Protein Network: Theoretical Nonlinear Analyses and Efficient FPGA Implementation
المؤلفون: Shogo Shirafuji, Hiroyuki Torikai
المصدر: IEEE Access, Vol 11, Pp 300-312 (2023)
بيانات النشر: IEEE, 2023.
سنة النشر: 2023
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Gene-protein network, cellular automaton, nonlinear dynamics bifurcation phenomena, field programmable gate array, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: A novel ergodic cellular automaton model of gene-protein network is presented. It is shown that the presented model can predict occurrences of typical nonlinear phenomena of a conventional ordinary differential equation gene-protein network model. In addition, theoretical analysis methods of the presented model are proposed. Using the analysis methods, an important advantage of the presented model is revealed: the ergodic cellular automaton is better suited to predict the occurrences of the nonlinear phenomena of the differential equation gene-protein network model compared to a regular (standard) cellular automaton. Furthermore, the presented model is implemented by a field programmable gate array and experiments validate its operations. It is then revealed that the presented model is much more hardware-efficient compared to a standard numerical integration formula of the differential equation model.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9998543/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2022.3231895
URL الوصول: https://doaj.org/article/f0b87e6cfba049cb965df31e6c4bbbd1
رقم الانضمام: edsdoj.f0b87e6cfba049cb965df31e6c4bbbd1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2022.3231895