Academic Journal

New Solitary Wave Solutions of the Lakshamanan–Porsezian–Daniel Model with the Application of the Φ6 Method in Fractional Sense

التفاصيل البيبلوغرافية
العنوان: New Solitary Wave Solutions of the Lakshamanan–Porsezian–Daniel Model with the Application of the Φ6 Method in Fractional Sense
المؤلفون: Hicham Saber, Hussien Albala, Khaled Aldwoah, Amer Alsulami, Khidir Shaib Mohamed, Mohammed Hassan, Abdelkader Moumen
المصدر: Fractal and Fractional, Vol 9, Iss 1, p 10 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Thermodynamics
LCC:Mathematics
LCC:Analysis
مصطلحات موضوعية: factional Lakshamanan–Porsezian–Daniel model, conformable derivative, Φ6 technique, soliton solutions, stability analysis, Thermodynamics, QC310.15-319, Mathematics, QA1-939, Analysis, QA299.6-433
الوصف: This paper explores a significant fractional model, which is the fractional Lakshamanan–Porsezian–Daniel (FLPD) model, widely used in various fields like nonlinear optics and plasma physics. An advanced analytical solution for it is attained by the Φ6 technique. According to this methodology, effective and accurate solutions for wave structures within various types can be produced in the FLPD model framework. Solutions such as dark, bright, singular, periodic, and plane waves are studied in detail to identify their stability and behavior. Validations are also brought forward to assess the precision and flexibility of the Φ6 technique in modeling fractional models. Therefore, it is established in this study that the Φ6 technique represents a powerful tool for examining wave patterns in differential fractional order models.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2504-3110
47188650
Relation: https://www.mdpi.com/2504-3110/9/1/10; https://doaj.org/toc/2504-3110
DOI: 10.3390/fractalfract9010010
URL الوصول: https://doaj.org/article/be1e6bf667eb47188650e0b6d43feaaa
رقم الانضمام: edsdoj.be1e6bf667eb47188650e0b6d43feaaa
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:25043110
47188650
DOI:10.3390/fractalfract9010010