Academic Journal

Remote Sensing Change Detection Based on Feature Fusion and Attention Network

التفاصيل البيبلوغرافية
العنوان: Remote Sensing Change Detection Based on Feature Fusion and Attention Network
المؤلفون: LAN Ling-xiang, CHI Ming-min
المصدر: Jisuanji kexue, Vol 49, Iss 6, Pp 193-198 (2022)
بيانات النشر: Editorial office of Computer Science, 2022.
سنة النشر: 2022
المجموعة: LCC:Computer software
LCC:Technology (General)
مصطلحات موضوعية: change detection, remote sensing, deep learning, attention mechanism, feature fusion, Computer software, QA76.75-76.765, Technology (General), T1-995
الوصف: Change detection is one of the essential tasks in remote sensing,which is usually regarded as a pixel-level classification problem.In recent years,deep neural networks have also been widely used in the change detection task due to their powerful hierarchical representation of bi-temporal images.A feature fusion and attention network (FFAN) is proposed based on neural encoder-fusion-decoder framework.It integrates features generated by encoder with the bi-temporal difference feature enhanced by attention mechanism,to better capture the bi-temporal change information.In particular,bi-temporal features enhanced by attention mechanism can significantly enhance the propagation of change information in the intermediate layers of deep networks,which adaptively recalibrates the change activation in FFAN by explicitly modeling the interdependence of bi-temporal inputs.Experiments conducted on open-source dataset demonstrate that,compared with existing methods,FFAN obtains better performance.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: Chinese
تدمد: 1002-137X
Relation: https://www.jsjkx.com/fileup/1002-137X/PDF/1002-137X-2022-49-6-193.pdf; https://doaj.org/toc/1002-137X
DOI: 10.11896/jsjkx.210500058
URL الوصول: https://doaj.org/article/bda7bd0a6ae04f8ea72c8c5570bb6a1a
رقم الانضمام: edsdoj.bda7bd0a6ae04f8ea72c8c5570bb6a1a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1002137X
DOI:10.11896/jsjkx.210500058