Academic Journal

GFNet: A Gradient Information Compensation-Based Face Super-Resolution Network

التفاصيل البيبلوغرافية
العنوان: GFNet: A Gradient Information Compensation-Based Face Super-Resolution Network
المؤلفون: Shengxiang Luo, Jinbo Lu
المصدر: IEEE Access, Vol 10, Pp 8073-8080 (2022)
بيانات النشر: IEEE, 2022.
سنة النشر: 2022
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Super-resolution, face hallucination, gradient information, feature fusion, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Face super-resolution (FSR) is defined as the generation of high-resolution face images from low-resolution face images. Existing FSR approaches usually improve the performance by combining deep learning with additional tasks such as face parsing and landmark prediction. However, the additional data requires manual labeling, and facial landmark heatmaps and parsing maps cannot represent the intrinsic geometric structure of facial components. In this paper, we introduce a FSR network based on gradient information compensation named GFNet, which consists of feature residual blocks (FRBs) and gradient extraction blocks (GEBs). Specifically, the GEB constructs pixel-level gradient maps directly from the feature maps without requiring data labels and extracts gradient features to compensate for the missing high-frequency components in the face features; the FRB extracts the face features in the network. Furthermore, we introduced a feature fusion mechanism between the GEB and the FRB, which fuses the face features with the gradient features. We evaluate the performance of proposed network on the two public datasets: CelebA-HQ dataset and Helen dataset. Experimental results show that the proposed method is able to reconstruct fine face images, which outperforms the other state-of-the-art methods such as SRResnet, FSRNet, and MSFSR.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9682698/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2022.3143499
URL الوصول: https://doaj.org/article/ebbeab1e43c24dfa9e042f66eadc6b66
رقم الانضمام: edsdoj.bbeab1e43c24dfa9e042f66eadc6b66
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2022.3143499