Academic Journal

Estimation and Calibration of Robot Link Parameters with Intelligent Techniques

التفاصيل البيبلوغرافية
العنوان: Estimation and Calibration of Robot Link Parameters with Intelligent Techniques
المؤلفون: M. Barati, A. R. Khoogar, M. Nasirian
المصدر: Iranian Journal of Electrical and Electronic Engineering, Vol 7, Iss 4, Pp 225-234 (2011)
بيانات النشر: Iran University of Science and Technology, 2011.
سنة النشر: 2011
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: calibration, identification, genetic algorithm, least square, particle swarm optimization, robot manipulator, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy to use algorithm is introduced for correction and calibration of robot kinematics parameters. Actually at several end-effecter positions, the joint variables are measured simultaneously. This information is then used in two different algorithms least square (LS) and Genetic algorithm (GA) for automatic calibration and correction of the kinematics parameters. This process was also tested experimentally via a three degree of freedom manipulator which is actually used as a coordinate measuring machine (CMM). The experimental Results prove that the Genetic algorithms are better for both parameter identification and calibration of link parameters.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1735-2827
2383-3890
Relation: http://ijeee.iust.ac.ir/browse.php?a_code=A-10-327-1&slc_lang=en&sid=1; https://doaj.org/toc/1735-2827; https://doaj.org/toc/2383-3890
URL الوصول: https://doaj.org/article/eabbaacb46014d57874bff85e0354554
رقم الانضمام: edsdoj.bbaacb46014d57874bff85e0354554
قاعدة البيانات: Directory of Open Access Journals