Academic Journal

A Comparative Study of Six Hybrid Prediction Models for Uniaxial Compressive Strength of Rock Based on Swarm Intelligence Optimization Algorithms

التفاصيل البيبلوغرافية
العنوان: A Comparative Study of Six Hybrid Prediction Models for Uniaxial Compressive Strength of Rock Based on Swarm Intelligence Optimization Algorithms
المؤلفون: Yu Lei, Shengtao Zhou, Xuedong Luo, Shuaishuai Niu, Nan Jiang
المصدر: Frontiers in Earth Science, Vol 10 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Science
مصطلحات موضوعية: uniaxial compressive strength, rock, BP neural network, swarm intelligence optimization algorithm, normalized mutual information, Science
الوصف: Uniaxial compressive strength (UCS) is a significant parameter in mining engineering and rock engineering. The laboratory rock test is time-consuming and economically costly. Therefore, developing a reliable and accurate UCS prediction model through easily obtained rock parameters is a good way. In this paper, we set five input parameters and compare six hybrid models based on BP neural network and six swarm intelligence optimization algorithms–bird swarm algorithm (BSA), grey wolf optimization (GWO), whale optimization algorithm (WOA), seagull optimization algorithm (SOA), lion swarm optimization (LSO), firefly algorithm (FA) with the accuracy of two single models without optimization–BP neural network and random forest algorithm. Finally, the above eight models were evaluated and compared by root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and a10 index to obtain the most suitable prediction model. It is indicated that the best prediction model is the FA-BP model, with a RMSE value of 4.883, a MAPE value of 0.063, and a R2 of 0.985, and an a10 index of 0.967. Furthermore, the normalized mutual information sensitivity analysis shows that point load strength is the most effective parameters on the UCS, respectively.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-6463
Relation: https://www.frontiersin.org/articles/10.3389/feart.2022.930130/full; https://doaj.org/toc/2296-6463
DOI: 10.3389/feart.2022.930130
URL الوصول: https://doaj.org/article/bb8b94d0ea5443a7abfb2bc3fdbc7903
رقم الانضمام: edsdoj.bb8b94d0ea5443a7abfb2bc3fdbc7903
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22966463
DOI:10.3389/feart.2022.930130