Academic Journal

Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials

التفاصيل البيبلوغرافية
العنوان: Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
المؤلفون: Viktor Zaverkin, David Holzmüller, Henrik Christiansen, Federico Errica, Francesco Alesiani, Makoto Takamoto, Mathias Niepert, Johannes Kästner
المصدر: npj Computational Materials, Vol 10, Iss 1, Pp 1-18 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Materials of engineering and construction. Mechanics of materials
LCC:Computer software
مصطلحات موضوعية: Materials of engineering and construction. Mechanics of materials, TA401-492, Computer software, QA76.75-76.765
الوصف: Abstract Efficiently creating a concise but comprehensive data set for training machine-learned interatomic potentials (MLIPs) is an under-explored problem. Active learning, which uses biased or unbiased molecular dynamics (MD) to generate candidate pools, aims to address this objective. Existing biased and unbiased MD-simulation methods, however, are prone to miss either rare events or extrapolative regions—areas of the configurational space where unreliable predictions are made. This work demonstrates that MD, when biased by the MLIP’s energy uncertainty, simultaneously captures extrapolative regions and rare events, which is crucial for developing uniformly accurate MLIPs. Furthermore, exploiting automatic differentiation, we enhance bias-forces-driven MD with the concept of bias stress. We employ calibrated gradient-based uncertainties to yield MLIPs with similar or, sometimes, better accuracy than ensemble-based methods at a lower computational cost. Finally, we apply uncertainty-biased MD to alanine dipeptide and MIL-53(Al), generating MLIPs that represent both configurational spaces more accurately than models trained with conventional MD.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2057-3960
Relation: https://doaj.org/toc/2057-3960
DOI: 10.1038/s41524-024-01254-1
URL الوصول: https://doaj.org/article/b80bd493f23e40339f5d153468a09724
رقم الانضمام: edsdoj.b80bd493f23e40339f5d153468a09724
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20573960
DOI:10.1038/s41524-024-01254-1