Academic Journal

Graphical models for inferring single molecule dynamics

التفاصيل البيبلوغرافية
العنوان: Graphical models for inferring single molecule dynamics
المؤلفون: Gonzalez Ruben L, Fei Jingyi, Hofman Jake M, Bronson Jonathan E, Wiggins Chris H
المصدر: BMC Bioinformatics, Vol 11, Iss Suppl 8, p S2 (2010)
بيانات النشر: BMC, 2010.
سنة النشر: 2010
المجموعة: LCC:Computer applications to medicine. Medical informatics
LCC:Biology (General)
مصطلحات موضوعية: Computer applications to medicine. Medical informatics, R858-859.7, Biology (General), QH301-705.5
الوصف: Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm, the most important being a natural form of model selection and a well-posed (non-divergent) optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1471-2105
Relation: http://www.biomedcentral.com/1471-2105/11/S8/S2; https://doaj.org/toc/1471-2105
DOI: 10.1186/1471-2105-11-S8-S2
URL الوصول: https://doaj.org/article/b60c7b0a1edf49379597be704ed55765
رقم الانضمام: edsdoj.b60c7b0a1edf49379597be704ed55765
قاعدة البيانات: Directory of Open Access Journals
ResultId 1
Header edsdoj
Directory of Open Access Journals
edsdoj.b60c7b0a1edf49379597be704ed55765
841
3
Academic Journal
academicJournal
841.444030761719
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.b60c7b0a1edf49379597be704ed55765&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://doaj.org/article/b60c7b0a1edf49379597be704ed55765 [Name] => EDS - DOAJ [Category] => fullText [Text] => View record in DOAJ [MouseOverText] => View record in DOAJ ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsdoj&genre=article&issn=14712105&ISBN=&volume=11&issue=Suppl%208&date=20101001&spage=S2&pages=&title=BMC Bioinformatics&atitle=Graphical%20models%20for%20inferring%20single%20molecule%20dynamics&id=DOI:10.1186/1471-2105-11-S8-S2 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Graphical models for inferring single molecule dynamics )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Gonzalez+Ruben+L%22">Gonzalez Ruben L</searchLink><br /><searchLink fieldCode="AR" term="%22Fei+Jingyi%22">Fei Jingyi</searchLink><br /><searchLink fieldCode="AR" term="%22Hofman+Jake+M%22">Hofman Jake M</searchLink><br /><searchLink fieldCode="AR" term="%22Bronson+Jonathan+E%22">Bronson Jonathan E</searchLink><br /><searchLink fieldCode="AR" term="%22Wiggins+Chris+H%22">Wiggins Chris H</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => BMC Bioinformatics, Vol 11, Iss Suppl 8, p S2 (2010) )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => BMC, 2010. )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2010 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => LCC:Computer applications to medicine. Medical informatics<br />LCC:Biology (General) )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Computer+applications+to+medicine%2E+Medical+informatics%22">Computer applications to medicine. Medical informatics</searchLink><br /><searchLink fieldCode="DE" term="%22R858-859%2E7%22">R858-859.7</searchLink><br /><searchLink fieldCode="DE" term="%22Biology+%28General%29%22">Biology (General)</searchLink><br /><searchLink fieldCode="DE" term="%22QH301-705%2E5%22">QH301-705.5</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm, the most important being a natural form of model selection and a well-posed (non-divergent) optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article )
Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => electronic resource )
Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 1471-2105 )
Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => http://www.biomedcentral.com/1471-2105/11/S8/S2; https://doaj.org/toc/1471-2105 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1186/1471-2105-11-S8-S2 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://doaj.org/article/b60c7b0a1edf49379597be704ed55765" linkWindow="_blank">https://doaj.org/article/b60c7b0a1edf49379597be704ed55765</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsdoj.b60c7b0a1edf49379597be704ed55765 )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1186/1471-2105-11-S8-S2 ) ) [Languages] => Array ( [0] => Array ( [Text] => English ) ) [PhysicalDescription] => Array ( [Pagination] => Array ( [StartPage] => S2 ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Computer applications to medicine. Medical informatics [Type] => general ) [1] => Array ( [SubjectFull] => R858-859.7 [Type] => general ) [2] => Array ( [SubjectFull] => Biology (General) [Type] => general ) [3] => Array ( [SubjectFull] => QH301-705.5 [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Graphical models for inferring single molecule dynamics [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Gonzalez Ruben L ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Fei Jingyi ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Hofman Jake M ) ) ) [3] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Bronson Jonathan E ) ) ) [4] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Wiggins Chris H ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 10 [Type] => published [Y] => 2010 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 14712105 ) ) [Numbering] => Array ( [0] => Array ( [Type] => volume [Value] => 11 ) [1] => Array ( [Type] => issue [Value] => Suppl 8 ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => BMC Bioinformatics [Type] => main ) ) ) ) ) ) )
IllustrationInfo