Academic Journal
Graphical models for inferring single molecule dynamics
العنوان: | Graphical models for inferring single molecule dynamics |
---|---|
المؤلفون: | Gonzalez Ruben L, Fei Jingyi, Hofman Jake M, Bronson Jonathan E, Wiggins Chris H |
المصدر: | BMC Bioinformatics, Vol 11, Iss Suppl 8, p S2 (2010) |
بيانات النشر: | BMC, 2010. |
سنة النشر: | 2010 |
المجموعة: | LCC:Computer applications to medicine. Medical informatics LCC:Biology (General) |
مصطلحات موضوعية: | Computer applications to medicine. Medical informatics, R858-859.7, Biology (General), QH301-705.5 |
الوصف: | Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm, the most important being a natural form of model selection and a well-posed (non-divergent) optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 1471-2105 |
Relation: | http://www.biomedcentral.com/1471-2105/11/S8/S2; https://doaj.org/toc/1471-2105 |
DOI: | 10.1186/1471-2105-11-S8-S2 |
URL الوصول: | https://doaj.org/article/b60c7b0a1edf49379597be704ed55765 |
رقم الانضمام: | edsdoj.b60c7b0a1edf49379597be704ed55765 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 14712105 |
---|---|
DOI: | 10.1186/1471-2105-11-S8-S2 |