Academic Journal

Thermal fault diagnosis of complex electrical equipment based on infrared image recognition

التفاصيل البيبلوغرافية
العنوان: Thermal fault diagnosis of complex electrical equipment based on infrared image recognition
المؤلفون: Zongbu Tang, Xuan Jian
المصدر: Scientific Reports, Vol 14, Iss 1, Pp 1-16 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Complex electrical equipment, Thermal fault diagnosis, Infrared image, Temperature difference, Semantic segmentation, Refined detection, Medicine, Science
الوصف: Abstract This paper realizes infrared image denoising, recognition, and semantic segmentation for complex electrical equipment and proposes a thermal fault diagnosis method that incorporates temperature differences. We introduce a deformable convolution module into the Denoising Convolutional Neural Network (DeDn-CNN) and propose an image denoising algorithm based on this improved network. By replacing Gaussian wrap-around filtering with anisotropic diffusion filtering, we suggest an image enhancement algorithm that employs Weighted Guided Filtering (WGF) with an enhanced Single-Scale Retinex (Ani-SSR) technique to prevent strong edge halos. Furthermore, we propose a refined detection algorithm for electrical equipment that builds upon an improved RetinaNet. This algorithm incorporates a rotating rectangular frame and an attention module, addressing the challenge of precise detection in scenarios where electrical equipment is densely arranged or tilted. We also introduce a thermal fault diagnosis approach that combines temperature differences with DeeplabV3 + semantic segmentation. The improved RetinaNet's recognition results are fed into the DeeplabV3 + model to further segment structures prone to thermal faults. The accuracy of component recognition in this paper achieved 87.23%, 86.54%, and 90.91%, with respective false alarm rates of 7.50%, 8.20%, and 7.89%. We propose a comprehensive method spanning from preprocessing through target recognition to thermal fault diagnosis for infrared images of complex electrical equipment, providing practical insights and robust solutions for future automation of electrical equipment inspections.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-024-56142-x
URL الوصول: https://doaj.org/article/b54569bd96854794b5ef71366ff453eb
رقم الانضمام: edsdoj.b54569bd96854794b5ef71366ff453eb
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-024-56142-x