التفاصيل البيبلوغرافية
العنوان: |
Karush-Kuhn-Tucker optimality conditions for a class of robust optimization problems with an interval-valued objective function |
المؤلفون: |
Zhao Jing, Bin Maojun |
المصدر: |
Open Mathematics, Vol 18, Iss 1, Pp 781-793 (2020) |
بيانات النشر: |
De Gruyter, 2020. |
سنة النشر: |
2020 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
karush-kuhn-tucker optimality, robust optimization, generalized convexity, interval-valued function, nondominated solution, 49j15, 49j52, 58c06, Mathematics, QA1-939 |
الوصف: |
In this article, we study the nonlinear and nonsmooth interval-valued optimization problems in the face of data uncertainty, which are called interval-valued robust optimization problems (IVROPs). We introduce the concept of nondominated solutions for the IVROP. If the interval-valued objective function f and constraint functions gi{g}_{i} are nonsmooth on Banach space E, we establish a nonsmooth and robust Karush-Kuhn-Tucker optimality theorem. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2391-5455 |
Relation: |
https://doaj.org/toc/2391-5455 |
DOI: |
10.1515/math-2020-0042 |
URL الوصول: |
https://doaj.org/article/cb13ea1f9c2d4117bda8cc58147ae381 |
رقم الانضمام: |
edsdoj.b13ea1f9c2d4117bda8cc58147ae381 |
قاعدة البيانات: |
Directory of Open Access Journals |