Academic Journal

Karush-Kuhn-Tucker optimality conditions for a class of robust optimization problems with an interval-valued objective function

التفاصيل البيبلوغرافية
العنوان: Karush-Kuhn-Tucker optimality conditions for a class of robust optimization problems with an interval-valued objective function
المؤلفون: Zhao Jing, Bin Maojun
المصدر: Open Mathematics, Vol 18, Iss 1, Pp 781-793 (2020)
بيانات النشر: De Gruyter, 2020.
سنة النشر: 2020
المجموعة: LCC:Mathematics
مصطلحات موضوعية: karush-kuhn-tucker optimality, robust optimization, generalized convexity, interval-valued function, nondominated solution, 49j15, 49j52, 58c06, Mathematics, QA1-939
الوصف: In this article, we study the nonlinear and nonsmooth interval-valued optimization problems in the face of data uncertainty, which are called interval-valued robust optimization problems (IVROPs). We introduce the concept of nondominated solutions for the IVROP. If the interval-valued objective function f and constraint functions gi{g}_{i} are nonsmooth on Banach space E, we establish a nonsmooth and robust Karush-Kuhn-Tucker optimality theorem.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2391-5455
Relation: https://doaj.org/toc/2391-5455
DOI: 10.1515/math-2020-0042
URL الوصول: https://doaj.org/article/cb13ea1f9c2d4117bda8cc58147ae381
رقم الانضمام: edsdoj.b13ea1f9c2d4117bda8cc58147ae381
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23915455
DOI:10.1515/math-2020-0042