Academic Journal

Evaluating a typology of signals for automatic detection of complementarity

التفاصيل البيبلوغرافية
العنوان: Evaluating a typology of signals for automatic detection of complementarity
المؤلفون: Jackson Wilke da Cruz Souza, Ariani Di Felippo
المصدر: Domínios de Lingu@gem, Vol 16, Iss 4, Pp 1517-1543 (2022)
بيانات النشر: Programa de Pós-Graduação em Estudos Linguísticos, 2022.
سنة النشر: 2022
المجموعة: LCC:Language and Literature
LCC:Philology. Linguistics
مصطلحات موضوعية: cross-document structure theory, automatic summarization, multi-document corpus, complementarity, textual signal, Language and Literature, Philology. Linguistics, P1-1091
الوصف: In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
Spanish; Castilian
Portuguese
تدمد: 1980-5799
Relation: https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776; https://doaj.org/toc/1980-5799
DOI: 10.14393/DL52-v16n4a2022-10
URL الوصول: https://doaj.org/article/db03c93c888942298e28fb70bbb344ee
رقم الانضمام: edsdoj.b03c93c888942298e28fb70bbb344ee
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19805799
DOI:10.14393/DL52-v16n4a2022-10