Academic Journal

Robust Face Super-Resolution via Locality-Constrained Low-Rank Representation

التفاصيل البيبلوغرافية
العنوان: Robust Face Super-Resolution via Locality-Constrained Low-Rank Representation
المؤلفون: Tao Lu, Zixiang Xiong, Yanduo Zhang, Bo Wang, Tongwei Lu
المصدر: IEEE Access, Vol 5, Pp 13103-13117 (2017)
بيانات النشر: IEEE, 2017.
سنة النشر: 2017
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Face super-resolution, low-rank representation, locality constraint, alternating direction method of multiplier, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Learning-based face super-resolution relies on obtaining accurate a priori knowledge from the training data. Representation-based approaches (e.g., sparse representation-based and neighbor embedding-based schemes) decompose the input images using sophisticated regularization techniques. They give reasonably good reconstruction performance. However, in real application scenarios, the input images are often noisy, blurry, or suffer from other unknown degradations. Traditional face super-resolution techniques treat image noise at the pixel level without considering the underlying image structures. In order to rectify this shortcoming, we propose in this paper a unified framework for representation-based face super-resolution by introducing a locality-constrained low-rank representation (LLR) scheme to reveal the intrinsic structures of input images. The low-rank representation part of LLR clusters an input image into the most accurate subspace from a global dictionary of atoms, while the locality constraint enables recovery of local manifold structures from local patches. In addition, low-rank, sparsity, locality, accuracy, and robustness of the representation coefficients are exploited in LLR via regularization. Experiments on the FEI, CMU face database, and real surveillance scenario show that LLR outperforms the state-of-the-art face super-resolution algorithms (e.g., convolutional neural network-based deep learning) both objectively and subjectively.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/7954766/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2017.2717963
URL الوصول: https://doaj.org/article/9d147b57c56e4230aae1562d42ca7665
رقم الانضمام: edsdoj.9d147b57c56e4230aae1562d42ca7665
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2017.2717963