Academic Journal

Federated Learning Based on Kernel Local Differential Privacy and Low Gradient Sampling

التفاصيل البيبلوغرافية
العنوان: Federated Learning Based on Kernel Local Differential Privacy and Low Gradient Sampling
المؤلفون: Yi Chen, Dan Chen, Niansheng Tang
المصدر: IEEE Access, Vol 13, Pp 16959-16977 (2025)
بيانات النشر: IEEE, 2025.
سنة النشر: 2025
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Differential privacy, federated learning, low gradient sampling, random Fourier feature mapping, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Federated learning that is an approach to addressing the “data silo” problem in a collaborative fashion may face the risk of data leakage in real-world contexts. To solve this problem, we introduce the random Fourier feature mapping (RFFM) together with kernel local differential privacy (KLDP) and develop a new privacy protection mechanism, called the RFFM-KLDP mechanism, for high-dimensional context data. Theoretical properties show that the proposed privacy-preserving mechanism has the properties of $\epsilon $ -LDP and $\epsilon $ -distance-LDP in the federated learning framework. To guarantee the effectiveness of federated learning in the presence of contaminated data, we develop a modified low-gradient sampling technique to sample representative subset of uncontaminated data by incorporating large gradients and unbalanced information. By combining RFFM-KLDP and modified low-gradient sampling technique, we develop a novel and robust federated learning method for classification in the presence of the noisy text data, which can preserve data privacy and largely improve the accuracy of classification algorithm compared to the existing classifiers in terms of the area under curve and classification accuracy. Simulation studies and a context example are used to illustrate the proposed methodologies.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10849528/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2025.3532683
URL الوصول: https://doaj.org/article/e9a6e12ca8a24da7bcf625a7edd60cc4
رقم الانضمام: edsdoj.9a6e12ca8a24da7bcf625a7edd60cc4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2025.3532683