Academic Journal

Classification of human walking context using a single-point accelerometer

التفاصيل البيبلوغرافية
العنوان: Classification of human walking context using a single-point accelerometer
المؤلفون: Loubna Baroudi, Kira Barton, Stephen M. Cain, K. Alex Shorter
المصدر: Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract Real-world walking data offers rich insights into a person’s mobility. Yet, daily life variations can alter these patterns, making the data challenging to interpret. As such, it is essential to integrate context for the extraction of meaningful information from real-world movement data. In this work, we leveraged the relationship between the characteristics of a walking bout and context to build a classification algorithm to distinguish between indoor and outdoor walks. We used data from 20 participants wearing an accelerometer on the thigh over a week. Their walking bouts were isolated and labeled using GPS and self-reporting data. We trained and validated two machine learning models, random forest and ensemble Support Vector Machine, using a leave-one-participant-out validation scheme on 15 subjects. The 5 remaining subjects were used as a testing set to choose a final model. The chosen model achieved an accuracy of 0.941, an F1-score of 0.963, and an AUROC of 0.931. This validated model was then used to label the walks from a different dataset with 15 participants wearing the same accelerometer. Finally, we characterized the differences between indoor and outdoor walks using the ensemble of the data. We found that participants walked significantly faster, longer, and more continuously when walking outdoors compared to indoors. These results demonstrate how movement data alone can be used to obtain accurate information on important contextual factors. These factors can then be leveraged to enhance our understanding and interpretation of real-world movement data, providing deeper insights into a person’s health.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-024-53143-8
URL الوصول: https://doaj.org/article/98382019575348c68df1ea7b5b7ad220
رقم الانضمام: edsdoj.98382019575348c68df1ea7b5b7ad220
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-024-53143-8