التفاصيل البيبلوغرافية
العنوان: |
Stability index of linear random dynamical systems |
المؤلفون: |
Anna Cima, Armengol Gasull, Víctor Mañosa |
المصدر: |
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 15, Pp 1-27 (2021) |
بيانات النشر: |
University of Szeged, 2021. |
سنة النشر: |
2021 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
stability index, random differential equations, random difference equations, random dynamical systems, Mathematics, QA1-939 |
الوصف: |
Given a homogeneous linear discrete or continuous dynamical system, its stability index is given by the dimension of the stable manifold of the zero solution. In particular, for the $n$ dimensional case, the zero solution is globally asymptotically stable if and only if this stability index is $n.$ Fixed $n,$ let $X$ be the random variable that assigns to each linear random dynamical system its stability index, and let $p_k$ with $k=0,1,\ldots,n,$ denote the probabilities that $P(X=k)$. In this paper we obtain either the exact values $p_k,$ or their estimations by combining the Monte Carlo method with a least square approach that uses some affine relations among the values $p_k,k=0,1,\ldots,n.$ The particular case of $n$-order homogeneous linear random differential or difference equations is also studied in detail. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
1417-3875 |
Relation: |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8280; https://doaj.org/toc/1417-3875 |
DOI: |
10.14232/ejqtde.2021.1.15 |
URL الوصول: |
https://doaj.org/article/975949bccbcd49a3800f37d528ea456b |
رقم الانضمام: |
edsdoj.975949bccbcd49a3800f37d528ea456b |
قاعدة البيانات: |
Directory of Open Access Journals |