Academic Journal

Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model

التفاصيل البيبلوغرافية
العنوان: Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model
المؤلفون: Milos Katanic, John Lygeros, Gabriela Hug
المصدر: IET Generation, Transmission & Distribution, Vol 18, Iss 22, Pp 3657-3668 (2024)
بيانات النشر: Wiley, 2024.
سنة النشر: 2024
المجموعة: LCC:Production of electric energy or power. Powerplants. Central stations
مصطلحات موضوعية: differential algebraic equations, Kalman filters, state estimation, Distribution or transmission of electric power, TK3001-3521, Production of electric energy or power. Powerplants. Central stations, TK1001-1841
الوصف: Abstract Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1751-8695
1751-8687
Relation: https://doaj.org/toc/1751-8687; https://doaj.org/toc/1751-8695
DOI: 10.1049/gtd2.13308
URL الوصول: https://doaj.org/article/974cafd353c64a73853fb0ea8336a6f4
رقم الانضمام: edsdoj.974cafd353c64a73853fb0ea8336a6f4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17518695
17518687
DOI:10.1049/gtd2.13308