Academic Journal

Feature Extraction Techniques for Facial Expression Recognition (FER)

التفاصيل البيبلوغرافية
العنوان: Feature Extraction Techniques for Facial Expression Recognition (FER)
المؤلفون: Hadeel Mohammed, Mohammed Nasser Hussain, Faiz Al Alawy
المصدر: Al-Iraqia Journal for Scientific Engineering Research, Vol 2, Iss 3 (2023)
بيانات النشر: Al-Iraqia University - College of Engineering, 2023.
سنة النشر: 2023
المجموعة: LCC:Science
مصطلحات موضوعية: Feature extraction, Handcrafted method, Deep learning method, fisher Vector Encoding, Science
الوصف: Facial expression recognition (FER) is a significant area of study in computer vision and affective computing. In numerous applications, such as human-computer interaction, emotion detection, and behavior analysis. Feature extraction is a crucial stage in facial expression recognition systems, as it involves extracting pertinent information from facial images in order to accurately represent various facial expressions. The purpose of this paper is to investigate and compare the various feature extraction techniques used in facial expression recognition, as well as their merits, limitations, and impact on overall system performance. Using benchmark datasets and performance metrics, the evaluation provides insight into the efficacy of various feature extraction methods. In this study, we propose a method for facial expression recognition that integrates deep learning, Principal Component Analysis (PCA), and Gray Level Co-occurrence Matrix (GLCM). Use 1D-CNN for classification.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2710-2165
Relation: https://ijser.aliraqia.edu.iq/index.php/ijser/article/view/85; https://doaj.org/toc/2710-2165
DOI: 10.58564/IJSER.2.3.2023.85
URL الوصول: https://doaj.org/article/96ad380161c3495399380041a41b9a0c
رقم الانضمام: edsdoj.96ad380161c3495399380041a41b9a0c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:27102165
DOI:10.58564/IJSER.2.3.2023.85