Academic Journal

Orlicz estimates for parabolic Schrödinger operators with non-negative potentials on nilpotent Lie groups

التفاصيل البيبلوغرافية
العنوان: Orlicz estimates for parabolic Schrödinger operators with non-negative potentials on nilpotent Lie groups
المؤلفون: Kelei Zhang
المصدر: AIMS Mathematics, Vol 8, Iss 8, Pp 18631-18648 (2023)
بيانات النشر: AIMS Press, 2023.
سنة النشر: 2023
المجموعة: LCC:Mathematics
مصطلحات موضوعية: nilpotent lie group, orlicz space, parabolic schrödinger operator, non-negative potential, domain decomposition method, Mathematics, QA1-939
الوصف: In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator $ L = {\partial _t} - {\Delta _X} + V, $ where the nonnegative potential $ V $ belongs to a reverse Hölder class on nilpotent Lie groups $ {\Bbb G} $ and $ {\Delta _X} $ is the sub-Laplace operator on $ {\Bbb G} $. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator $ L $ in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the $ L^{p} $ estimates.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2473-6988
Relation: https://doaj.org/toc/2473-6988
DOI: 10.3934/math.2023949?viewType=HTML
DOI: 10.3934/math.2023949
URL الوصول: https://doaj.org/article/c916685bfe9d420e8b7093bab7932fa2
رقم الانضمام: edsdoj.916685bfe9d420e8b7093bab7932fa2
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:24736988
DOI:10.3934/math.2023949?viewType=HTML