التفاصيل البيبلوغرافية
العنوان: |
Orlicz estimates for parabolic Schrödinger operators with non-negative potentials on nilpotent Lie groups |
المؤلفون: |
Kelei Zhang |
المصدر: |
AIMS Mathematics, Vol 8, Iss 8, Pp 18631-18648 (2023) |
بيانات النشر: |
AIMS Press, 2023. |
سنة النشر: |
2023 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
nilpotent lie group, orlicz space, parabolic schrödinger operator, non-negative potential, domain decomposition method, Mathematics, QA1-939 |
الوصف: |
In this paper, we study the Orlicz estimates for the parabolic Schrödinger operator $ L = {\partial _t} - {\Delta _X} + V, $ where the nonnegative potential $ V $ belongs to a reverse Hölder class on nilpotent Lie groups $ {\Bbb G} $ and $ {\Delta _X} $ is the sub-Laplace operator on $ {\Bbb G} $. Under appropriate growth conditions of the Young function, we obtain the regularity estimates of the operator $ L $ in the Orlicz space by using the domain decomposition method. Our results generalize some existing ones of the $ L^{p} $ estimates. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2473-6988 |
Relation: |
https://doaj.org/toc/2473-6988 |
DOI: |
10.3934/math.2023949?viewType=HTML |
DOI: |
10.3934/math.2023949 |
URL الوصول: |
https://doaj.org/article/c916685bfe9d420e8b7093bab7932fa2 |
رقم الانضمام: |
edsdoj.916685bfe9d420e8b7093bab7932fa2 |
قاعدة البيانات: |
Directory of Open Access Journals |