Academic Journal

Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System

التفاصيل البيبلوغرافية
العنوان: Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System
المؤلفون: Qigao Fan, Hai Zhang, Peng Pan, Xiangpeng Zhuang, Jie Jia, Pengsong Zhang, Zhengqing Zhao, Gaowen Zhu, Yuanyuan Tang
المصدر: Sensors, Vol 19, Iss 2, p 294 (2019)
بيانات النشر: MDPI AG, 2019.
سنة النشر: 2019
المجموعة: LCC:Chemical technology
مصطلحات موضوعية: indoor inertial positioning, MEMS-IMU, improved pedestrian dead reckoning, robust adaptive Kalman filter, Chemical technology, TP1-1185
الوصف: Pedestrian dead reckoning (PDR) systems based on a microelectromechanical-inertial measurement unit (MEMS-IMU) providing advantages of full autonomy and strong anti-jamming performance are becoming a feasible choice for pedestrian indoor positioning. In order to realize the accurate positioning of pedestrians in a closed environment, an improved pedestrian dead reckoning algorithm, mainly including improved step estimation and heading estimation, is proposed in this paper. Firstly, the original signal is preprocessed using the wavelet denoising algorithm. Then, the multi-threshold method is proposed to ameliorate the step estimation algorithm. For heading estimation suffering from accumulated error and outliers, robust adaptive Kalman filter (RAKF) algorithm is proposed in this paper, and combined with complementary filter to improve positioning accuracy. Finally, an experimental platform with inertial sensors as the core is constructed. Experimental results show that positioning error is less than 2.5% of the total distance, which is ideal for accurate positioning of pedestrians in enclosed environment.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1424-8220
Relation: http://www.mdpi.com/1424-8220/19/2/294; https://doaj.org/toc/1424-8220
DOI: 10.3390/s19020294
URL الوصول: https://doaj.org/article/8fe70c815ca74ecabdc4be45144c6b89
رقم الانضمام: edsdoj.8fe70c815ca74ecabdc4be45144c6b89
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14248220
DOI:10.3390/s19020294