Academic Journal

Optimal energy scheduling for microgrid based on GAIL with Wasserstein distance

التفاصيل البيبلوغرافية
العنوان: Optimal energy scheduling for microgrid based on GAIL with Wasserstein distance
المؤلفون: Kuo Wang, Zhanqiang Zhang, Keqilao Meng, Pengbing Lei, Rui Wang, Wenlu Yang, Zhihua Lin
المصدر: AIP Advances, Vol 14, Iss 8, Pp 085013-085013-11 (2024)
بيانات النشر: AIP Publishing LLC, 2024.
سنة النشر: 2024
المجموعة: LCC:Physics
مصطلحات موضوعية: Physics, QC1-999
الوصف: Owing to the volatility and intermittency of renewable energy generation units in microgrids, effective energy scheduling methods are essential for efficient renewable energy utilization and stable microgrid operation. In recent years, microgrid energy optimization scheduling based on deep reinforcement learning (DRL) has made significant progress. With the development of the microgrid, the drawbacks of the traditional DRL agent, such as long training time and poor convergence effect, are gradually revealed. This paper proposes a generative adversarial imitation learning method with Wasserstein distance for optimal energy scheduling in the microgrid. This method combines a proximal policy optimization algorithm to optimize energy scheduling and reduce microgrid operating costs. First, the agent adaptively learns the action exploration process by imitating expert trajectories. Second, based on the generative adversarial theory, a discriminator network is added, and the Wasserstein distance is introduced into the discriminator network to distinguish between the generative and expert strategies. This feedback assists in updating the neural network parameters. Finally, the effectiveness of the proposed method is verified through an arithmetic example analysis.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2158-3226
Relation: https://doaj.org/toc/2158-3226
DOI: 10.1063/5.0207444
URL الوصول: https://doaj.org/article/8e920948ade140e5842e5d17cc32669d
رقم الانضمام: edsdoj.8e920948ade140e5842e5d17cc32669d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21583226
DOI:10.1063/5.0207444