Academic Journal

Thermal Face Generation Using StyleGAN

التفاصيل البيبلوغرافية
العنوان: Thermal Face Generation Using StyleGAN
المؤلفون: Gabriel Hermosilla, Diego-Ignacio Henriquez Tapia, Hector Allende-Cid, Gonzalo Farias Castro, Esteban Vera
المصدر: IEEE Access, Vol 9, Pp 80511-80523 (2021)
بيانات النشر: IEEE, 2021.
سنة النشر: 2021
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Generative adversarial networks, StyleGAN2, thermal face recognition, deep learning, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9445031/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2021.3085423
URL الوصول: https://doaj.org/article/8e00ebcc606e430db61e1c925dd4815c
رقم الانضمام: edsdoj.8e00ebcc606e430db61e1c925dd4815c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2021.3085423