Academic Journal

Image segmentation using active contours with image structure adaptive gradient vector flow external force

التفاصيل البيبلوغرافية
العنوان: Image segmentation using active contours with image structure adaptive gradient vector flow external force
المؤلفون: Dong Wang, Xing Dang, Weijing Liu, Yuanquan Wang
المصدر: Frontiers in Applied Mathematics and Statistics, Vol 9 (2023)
بيانات النشر: Frontiers Media S.A., 2023.
سنة النشر: 2023
المجموعة: LCC:Applied mathematics. Quantitative methods
LCC:Probabilities. Mathematical statistics
مصطلحات موضوعية: image segmentation, active contour, gradient vector flow, image structure tensor, diffusion tensor, Applied mathematics. Quantitative methods, T57-57.97, Probabilities. Mathematical statistics, QA273-280
الوصف: IntroductionGradient vector flow (GVF) has been proven as an effective external force for active contours. However, its smoothness constraint does not take the image structure into account, such that the GVF diffusion is isotropic and cannot preserve weak edges well.MethodsIn this article, an image structure adaptive gradient vector flow (ISAGVF) external force is proposed for active contours. In the proposed ISAGVF model, the smoothness constraint is first reformulated in matrix form, and then the image structure tensor is incorporated. As the structure tensor characterizes the image structure well, the proposed ISAGVF model can be adaptive to image structure, and the ISAGVF snake performs well on weak edge preservation and deep concavity convergence while possessing some other desirable properties of the GVF snake, such as enlarged capture range and insensitivity to initialization.ResultsExperiments on synthetic and real images manifest these properties of the ISAGVF snake.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2297-4687
Relation: https://www.frontiersin.org/articles/10.3389/fams.2023.1271296/full; https://doaj.org/toc/2297-4687
DOI: 10.3389/fams.2023.1271296
URL الوصول: https://doaj.org/article/8dd2cdd15f3b48c881a5ae2e5fc327d4
رقم الانضمام: edsdoj.8dd2cdd15f3b48c881a5ae2e5fc327d4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22974687
DOI:10.3389/fams.2023.1271296