Academic Journal

Perbandingan CART dan Random Forest untuk Deteksi Kanker berbasis Klasifikasi Data Microarray

التفاصيل البيبلوغرافية
العنوان: Perbandingan CART dan Random Forest untuk Deteksi Kanker berbasis Klasifikasi Data Microarray
المؤلفون: Riska Chairunisa, Adiwijaya, Widi Astuti
المصدر: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 4, Iss 5, Pp 805-812 (2020)
بيانات النشر: Ikatan Ahli Informatika Indonesia, 2020.
سنة النشر: 2020
المجموعة: LCC:Systems engineering
LCC:Information technology
مصطلحات موضوعية: kanker, microarray, discrete wavelet transform, classification and regression tree, random forest., Systems engineering, TA168, Information technology, T58.5-58.64
الوصف: Cancer is one of the deadliest diseases in the world with a mortality rate of 57,3% in 2018 in Asia. Therefore, early diagnosis is needed to avoid an increase in mortality caused by cancer. As machine learning develops, cancer gene data can be processed using microarrays for early detection of cancer outbreaks. But the problem that microarray has is the number of attributes that are so numerous that it is necessary to do dimensional reduction. To overcome these problems, this study used dimensions reduction Discrete Wavelet Transform (DWT) with Classification and Regression Tree (CART) and Random Forest (RF) as classification method. The purpose of using these two classification methods is to find out which classification method produces the best performance when combined with the DWT dimension reduction. This research use five microarray data, namely Colon Tumors, Breast Cancer, Lung Cancer, Prostate Tumors and Ovarian Cancer from Kent-Ridge Biomedical Dataset. The best accuracy obtained in this study for breast cancer data were 76,92% with CART-DWT, Colon Tumors 90,1% with RF-DWT, lung cancer 100% with RF-DWT, prostate tumors 95,49% with RF-DWT, and ovarian cancer 100% with RF-DWT. From these results it can be concluded that RF-DWT is better than CART-DWT.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2580-0760
Relation: http://jurnal.iaii.or.id/index.php/RESTI/article/view/2083; https://doaj.org/toc/2580-0760
DOI: 10.29207/resti.v4i5.2083
URL الوصول: https://doaj.org/article/8ca0cce2fb4f4393a85d237d49648279
رقم الانضمام: edsdoj.8ca0cce2fb4f4393a85d237d49648279
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:25800760
DOI:10.29207/resti.v4i5.2083