Academic Journal

Neural-Network-Based Model-Free Calibration Method for Stereo Fisheye Camera

التفاصيل البيبلوغرافية
العنوان: Neural-Network-Based Model-Free Calibration Method for Stereo Fisheye Camera
المؤلفون: Yuwei Cao, Hui Wang, Han Zhao, Xu Yang
المصدر: Frontiers in Bioengineering and Biotechnology, Vol 10 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Biotechnology
مصطلحات موضوعية: fisheye camera, stereo calibration, phase unwrapping, neural-network, large field of view, Biotechnology, TP248.13-248.65
الوصف: The fisheye camera has a field of view (FOV) of over 180°, which has advantages in the fields of medicine and precision measurement. Ordinary pinhole models have difficulty in fitting the severe barrel distortion of the fisheye camera. Therefore, it is necessary to apply a nonlinear geometric model to model this distortion in measurement applications, while the process is computationally complex. To solve the problem, this paper proposes a model-free stereo calibration method for binocular fisheye camera based on neural-network. The neural-network can implicitly describe the nonlinear mapping relationship between image and spatial coordinates in the scene. We use a feature extraction method based on three-step phase-shift method. Compared with the conventional stereo calibration of fisheye cameras, our method does not require image correction and matching. The spatial coordinates of the points in the common field of view of binocular fisheye camera can all be calculated by the generalized fitting capability of the neural-network. Our method preserves the advantage of the broad field of view of the fisheye camera. The experimental results show that our method is more suitable for fisheye cameras with significant distortion.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-4185
Relation: https://www.frontiersin.org/articles/10.3389/fbioe.2022.955233/full; https://doaj.org/toc/2296-4185
DOI: 10.3389/fbioe.2022.955233
URL الوصول: https://doaj.org/article/8c74eb1df59149918823699cfe9da783
رقم الانضمام: edsdoj.8c74eb1df59149918823699cfe9da783
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22964185
DOI:10.3389/fbioe.2022.955233