Academic Journal

On the Best Proximity Points for p–Cyclic Summing Contractions

التفاصيل البيبلوغرافية
العنوان: On the Best Proximity Points for p–Cyclic Summing Contractions
المؤلفون: Miroslav Hristov, Atanas Ilchev, Boyan Zlatanov
المصدر: Mathematics, Vol 8, Iss 7, p 1060 (2020)
بيانات النشر: MDPI AG, 2020.
سنة النشر: 2020
المجموعة: LCC:Mathematics
مصطلحات موضوعية: fixed point, cyclical operator, contractive condition, best proximity point, uniformly convex Banach space, p–summing contraction, Mathematics, QA1-939
الوصف: We present a condition that guarantees the existence and uniqueness of fixed (or best proximity) points in complete metric space (or uniformly convex Banach spaces) for a wide class of cyclic maps, called p–cyclic summing maps. These results generalize some known results from fixed point theory. We find a priori and a posteriori error estimates of the fixed (or best proximity) point for the Picard iteration associated with the investigated class of maps, provided that the modulus of convexity of the underlying space is of power type. We illustrate the results with some applications and examples.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2227-7390
Relation: https://www.mdpi.com/2227-7390/8/7/1060; https://doaj.org/toc/2227-7390
DOI: 10.3390/math8071060
URL الوصول: https://doaj.org/article/8b1b05676fc942fdb21ee88c4891070a
رقم الانضمام: edsdoj.8b1b05676fc942fdb21ee88c4891070a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22277390
DOI:10.3390/math8071060