Academic Journal
Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network
العنوان: | Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network |
---|---|
المؤلفون: | Bo-Soung Jeoun, Su Yang, Sang-Jeong Lee, Tae-Il Kim, Jun-Min Kim, Jo-Eun Kim, Kyung-Hoe Huh, Sam-Sun Lee, Min-Suk Heo, Won-Jin Yi |
المصدر: | Scientific Reports, Vol 12, Iss 1, Pp 1-11 (2022) |
بيانات النشر: | Nature Portfolio, 2022. |
سنة النشر: | 2022 |
المجموعة: | LCC:Medicine LCC:Science |
مصطلحات موضوعية: | Medicine, Science |
الوصف: | Abstract The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2045-2322 |
Relation: | https://doaj.org/toc/2045-2322 |
DOI: | 10.1038/s41598-022-17341-6 |
URL الوصول: | https://doaj.org/article/8aae8492158947678741fb87a73c2fb6 |
رقم الانضمام: | edsdoj.8aae8492158947678741fb87a73c2fb6 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 20452322 |
---|---|
DOI: | 10.1038/s41598-022-17341-6 |