Academic Journal

ADMNet: adaptive deformable convolution large model combining multi-level progressive fusion for Building Change Detection

التفاصيل البيبلوغرافية
العنوان: ADMNet: adaptive deformable convolution large model combining multi-level progressive fusion for Building Change Detection
المؤلفون: Liye Mei, Haonan Yu, Zhaoyi Ye, Chuan Xu, Cheng Lei, Wei Yang
المصدر: Geo-spatial Information Science, Pp 1-18 (2025)
بيانات النشر: Taylor & Francis Group, 2025.
سنة النشر: 2025
المجموعة: LCC:Mathematical geography. Cartography
LCC:Geodesy
مصطلحات موضوعية: Adaptive deformable convolution (ADC), feature fusion, large model, Building Change Detection, Mathematical geography. Cartography, GA1-1776, Geodesy, QB275-343
الوصف: Building Change Detection (BCD) based on high-resolution Remote Sensing Images (RSI) simplifies urban surface monitoring. Nevertheless, the mainstream detection methods utilizing traditional convolution and attention mechanisms are often prone to errors due to the loss of edge detail information and underutilization of global context information. To address these issues, this paper presents a large model, namely ADMNet, which is built on adaptive deformable convolution and is designed to handles various types of building change information. First, we propose a Siamese neural network based on adaptive deformable convolution (ADC) modules. The ADC module incorporates spatial offset parameters into convolutional kernel sampling and mapping weights to capture irregularly varying edge features for local adaptive receptive fields. Second, we utilize a large model semantically driven to enhance model context awareness and construct long-range feature dependencies from multi-scale edge information, which are then integrated with locally adaptive edge structure features to achieve accurate edge localization. Furthermore, we design a Multi-Level Progressive Feature Fusion (MLPFF) module that enhances feature characterization capabilities to ensure internal integrity and improves model detection performance by integrating a priori knowledge from large-model transfer learning. To evaluate the effectiveness and generalizability of ADMNet, we conduct comparative experiments with current mainstream methods on two building datasets, LEVIR-CD and WHU-CD, and a land cover dataset, SYSU-CD. The results show that ADMNet outperforms all comparative methods. The source code is available at https://github.com/spaceYu180/ADMNet.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 10095020
1993-5153
1009-5020
Relation: https://doaj.org/toc/1009-5020; https://doaj.org/toc/1993-5153
DOI: 10.1080/10095020.2024.2448232
URL الوصول: https://doaj.org/article/8922a2f43a334d7dac5a0a0d91239bb1
رقم الانضمام: edsdoj.8922a2f43a334d7dac5a0a0d91239bb1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:10095020
19935153
DOI:10.1080/10095020.2024.2448232