Academic Journal

Energy-Efficient and Accelerated Resource Allocation in O-RAN Slicing Using Deep Reinforcement Learning and Transfer Learning

التفاصيل البيبلوغرافية
العنوان: Energy-Efficient and Accelerated Resource Allocation in O-RAN Slicing Using Deep Reinforcement Learning and Transfer Learning
المؤلفون: Sherif Heba, Ahmed Eman, Kotb Amira M.
المصدر: Cybernetics and Information Technologies, Vol 24, Iss 3, Pp 132-150 (2024)
بيانات النشر: Sciendo, 2024.
سنة النشر: 2024
المجموعة: LCC:Cybernetics
مصطلحات موضوعية: o-ran, 6g, radio resource management, deep reinforcement learning, transfer learning, Cybernetics, Q300-390
الوصف: Next Generation Wireless Networks (NGWNs) have two main components: Network Slicing and Open Radio Access Networks (O-RAN). NS is needed to handle various Quality of Services (QoS). O-RAN adopts an open environment for network vendors and Mobile Network Operators (MNOs). In recent years, Deep Reinforcement Learning (DRL) approaches have been proposed to solve some key issues in NGWNs. The primary obstacles preventing the DRL deployment are being slowly converged and unstable. Additionally, these algorithms have enormous carbon emissions that negatively impact climate change. This paper tackles the dynamic allocation problem of O-RAN radio resources for better QoS, faster convergence, stability, lower energy and power consumption, and reduced carbon emissions. Firstly, we develop an agent with a newly designed latency-based reward function and a top-k filtration mechanism for actions. Then, we propose a policy Transfer Learning approach to accelerate agent convergence. We compared our model to another two models.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1314-4081
Relation: https://doaj.org/toc/1314-4081
DOI: 10.2478/cait-2024-0029
URL الوصول: https://doaj.org/article/cd87eeaf981740639075cc5496eec1c7
رقم الانضمام: edsdoj.87eeaf981740639075cc5496eec1c7
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:13144081
DOI:10.2478/cait-2024-0029