Academic Journal

The damped Fermi–Pasta–Ulam oscillator

التفاصيل البيبلوغرافية
العنوان: The damped Fermi–Pasta–Ulam oscillator
المؤلفون: László Hatvani
المصدر: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 61, Pp 1-11 (2019)
بيانات النشر: University of Szeged, 2019.
سنة النشر: 2019
المجموعة: LCC:Mathematics
مصطلحات موضوعية: asymptotic stability, asymptotic stop, invariance principle, total mechanical energy, Mathematics, QA1-939
الوصف: The system \begin{equation*} \ddot{q}_k+\gamma \dot{q}_k=V'(q_{k+1}-q_k)-V'(q_k-q_{k-1})\qquad (k=1,\ldots,N-2) \end{equation*} is considered, where $00$ (fixed endpoints – this is the original Fermi–Pasta–Ulam oscillator provided that the damping coefficient $\gamma$ equals zero); $q_1(t)-q_0(t)= L/(N-1)$, $q_{N-1}(t)-q_{N-2}(t)= L/(N-1)$ (free endpoints); $q_0(t)=-(K-q_{N-2}(t))$, $q_{N-1}(t)=q_1(t)+K$, $K=\hbox{const.}$ (cycle). We prove that the unique equilibrium state of the system with fixed endpoints is asymptotically stable. We also prove that the system with free endpoints and the cycle asymptotically stop at an equilibrium state along their arbitrary motion, i.e., for every motion there is $q_1^\infty\in\mathbb{R}$ such that $\lim_{t\to\infty}q_k(t)=q_1^\infty+(k-1)\overline{r}$, $\lim_{t\to\infty}\dot q_k(t)=0$ $(k=1,\ldots,N-2)$, where the constant $\overline{r}$ is defined by the equation $V'(\overline{r})=0$.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1417-3875
Relation: http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7610; https://doaj.org/toc/1417-3875
DOI: 10.14232/ejqtde.2019.1.61
URL الوصول: https://doaj.org/article/8797096f8a5f45f1b1b261562f5c77a5
رقم الانضمام: edsdoj.8797096f8a5f45f1b1b261562f5c77a5
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14173875
DOI:10.14232/ejqtde.2019.1.61