Academic Journal
Estimation and Prediction for the Half-Normal Distribution based on Progressively Type-II Censored Samples
العنوان: | Estimation and Prediction for the Half-Normal Distribution based on Progressively Type-II Censored Samples |
---|---|
المؤلفون: | Sümeyra Sert, İhab A. S. Abusaif, Ertan Akgenç, Kadir Karakaya, Coşkun Kuş |
المصدر: | Revstat Statistical Journal, Vol 22, Iss 2 (2024) |
بيانات النشر: | Instituto Nacional de Estatística | Statistics Portugal, 2024. |
سنة النشر: | 2024 |
المجموعة: | LCC:Statistics LCC:Probabilities. Mathematical statistics |
مصطلحات موضوعية: | confidence intervals, half-normal distribution, maximum likelihood estimator, Monte Carlo simulation, pivotal estimator, prediction, Statistics, HA1-4737, Probabilities. Mathematical statistics, QA273-280 |
الوصف: | In this paper, estimation and prediction problems are discussed for the half-normal distribution under a progressively Type-II censoring scheme. This study focuses on two statistical inferential problems. In the first part of the study, several point estimators and confidence intervals are obtained for the scale parameter of the half-normal distribution. In the second part, several predictors and predictive intervals are derived for the removed failure times. A Monte Carlo simulation study is performed to discuss the mean squared error (mean squared prediction errors) and bias of estimates (predictors). The coverage probabilities and average length of the confidence and predictive intervals are simulated and a numerical example is provided. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 1645-6726 2183-0371 |
Relation: | https://revstat.ine.pt/index.php/REVSTAT/article/view/485; https://doaj.org/toc/1645-6726; https://doaj.org/toc/2183-0371 |
DOI: | 10.57805/revstat.v22i2.485 |
URL الوصول: | https://doaj.org/article/851f0adca7274dc2893ed17657809287 |
رقم الانضمام: | edsdoj.851f0adca7274dc2893ed17657809287 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 16456726 21830371 |
---|---|
DOI: | 10.57805/revstat.v22i2.485 |