Academic Journal

On the preservation of Lyapunov exponents of integrally separated systems of differential equations under small nonlinear perturbations

التفاصيل البيبلوغرافية
العنوان: On the preservation of Lyapunov exponents of integrally separated systems of differential equations under small nonlinear perturbations
المؤلفون: Vu Hoang Linh, Ngo Nga
المصدر: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 66, Pp 1-11 (2024)
بيانات النشر: University of Szeged, 2024.
سنة النشر: 2024
المجموعة: LCC:Mathematics
مصطلحات موضوعية: quasi-linear system, lyapunov exponent, integral separation, nonlinear perturbation, perron-type theorem, Mathematics, QA1-939
الوصف: This paper addresses the Lyapunov exponents of non-vanishing solutions to quasi-linear time-varying systems of differential equations. The linear part is not required to be regular but it is assumed to be integrally separated, which ensures that the associated Lyapunov exponents are distinct and stable. The nonlinear perturbations are assumed to be small in a certain sense, though less restrictive than the condition in Barreira and Valls’ paper, J. Differential Equations 258(2015), 339–361. The main result is a Perron-type theorem for upper and lower Lyapunov exponents, offering an alternative to Barreira and Valls’ result. In addition, an analogous result holds for Bohl exponents.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1417-3875
Relation: http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11210; https://doaj.org/toc/1417-3875
DOI: 10.14232/ejqtde.2024.1.66
URL الوصول: https://doaj.org/article/843c8f8134bb4ec88f707d7ee8a83926
رقم الانضمام: edsdoj.843c8f8134bb4ec88f707d7ee8a83926
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14173875
DOI:10.14232/ejqtde.2024.1.66